Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 118: 380-397, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485064

RESUMO

Autoantibodies directed against the GluA3 subunit (anti-GluA3 hIgGs) of AMPA receptors have been identified in 20%-25% of patients with frontotemporal lobar degeneration (FTLD). Data from patients and in vitro/ex vivo pre-clinical studies indicate that anti-GluA3 hIgGs negatively affect glutamatergic neurotransmission. However, whether and how the chronic presence of anti-GluA3 hIgGs triggers synaptic dysfunctions and the appearance of FTLD-related neuropathological and behavioural signature has not been clarified yet. To address this question, we developed and characterized a pre-clinical mouse model of passive immunization with anti-GluA3 hIgGs purified from patients. In parallel, we clinically compared FTLD patients who were positive for anti-GluA3 hIgGs to negative ones. Clinical data showed that the presence of anti-GluA3 hIgGs defined a subgroup of patients with distinct clinical features. In the preclinical model, anti-GluA3 hIgGs administration led to accumulation of phospho-tau in the postsynaptic fraction and dendritic spine loss in the prefrontal cortex. Remarkably, the preclinical model exhibited behavioural disturbances that mostly reflected the deficits proper of patients positive for anti-GluA3 hIgGs. Of note, anti-GluA3 hIgGs-mediated alterations were rescued in the animal model by enhancing glutamatergic neurotransmission with a positive allosteric modulator of AMPA receptors. Overall, our study clarified the contribution of anti-GluA3 autoantibodies to central nervous system symptoms and pathology and identified a specific subgroup of FTLD patients. Our findings will be instrumental in the development of a therapeutic personalised medicine strategy for patients positive for anti-GluA3 hIgGs.


Assuntos
Autoanticorpos , Degeneração Lobar Frontotemporal , Animais , Humanos , Camundongos , Autoanticorpos/metabolismo , Demência Frontotemporal , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Receptores de AMPA , Transmissão Sináptica , Proteínas tau/metabolismo
2.
Alzheimers Dement ; 20(2): 1156-1165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37908186

RESUMO

INTRODUCTION: We assessed TAR DNA-binding protein 43 (TDP-43) seeding activity and aggregates detection in olfactory mucosa of patients with frontotemporal lobar degeneration with TDP-43-immunoreactive pathology (FTLD-TDP) by TDP-43 seeding amplification assay (TDP43-SAA) and immunocytochemical analysis. METHODS: The TDP43-SAA was optimized using frontal cortex samples from 16 post mortem cases with FTLD-TDP, FTLD with tau inclusions, and controls. Subsequently, olfactory mucosa samples were collected from 17 patients with FTLD-TDP, 15 healthy controls, and three patients carrying MAPT variants. RESULTS: TDP43-SAA discriminated with 100% accuracy post mortem cases presenting or lacking TDP-43 neuropathology. TDP-43 seeding activity was detectable in the olfactory mucosa, and 82.4% of patients with FTLD-TDP tested positive, whereas 86.7% of controls tested negative (P < 0.001). Two out of three patients with MAPT mutations tested negative. In TDP43-SAA positive samples, cytoplasmatic deposits of phosphorylated TDP-43 in the olfactory neural cells were detected. DISCUSSION: TDP-43 aggregates can be detectable in olfactory mucosa, suggesting that TDP43-SAA might be useful for identifying and monitoring FTLD-TDP in living patients.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Lobo Frontal/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
3.
Genet Med ; 25(11): 100922, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37403762

RESUMO

PURPOSE: RPH3A encodes a protein involved in the stabilization of GluN2A subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptors at the cell surface, forming a complex essential for synaptic plasticity and cognition. We investigated the effect of variants in RPH3A in patients with neurodevelopmental disorders. METHODS: By using trio-based exome sequencing, GeneMatcher, and screening of 100,000 Genomes Project data, we identified 6 heterozygous variants in RPH3A. In silico and in vitro models, including rat hippocampal neuronal cultures, have been used to characterize the effect of the variants. RESULTS: Four cases had a neurodevelopmental disorder with untreatable epileptic seizures [p.(Gln73His)dn; p.(Arg209Lys); p.(Thr450Ser)dn; p.(Gln508His)], and 2 cases [p.(Arg235Ser); p.(Asn618Ser)dn] showed high-functioning autism spectrum disorder. Using neuronal cultures, we demonstrated that p.(Thr450Ser) and p.(Asn618Ser) reduce the synaptic localization of GluN2A; p.(Thr450Ser) also increased the surface levels of GluN2A. Electrophysiological recordings showed increased GluN2A-dependent NMDA ionotropic glutamate receptor currents for both variants and alteration of postsynaptic calcium levels. Finally, expression of the Rph3AThr450Ser variant in neurons affected dendritic spine morphology. CONCLUSION: Overall, we provide evidence that missense gain-of-function variants in RPH3A increase GluN2A-containing NMDA ionotropic glutamate receptors at extrasynaptic sites, altering synaptic function and leading to a clinically variable neurodevelopmental presentation ranging from untreatable epilepsy to autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Animais , Humanos , Ratos , Transtorno do Espectro Autista/genética , Epilepsia/genética , Mutação de Sentido Incorreto/genética , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Rabfilina-3A
4.
Mol Ther ; 30(7): 2474-2490, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390543

RESUMO

The development of new therapeutic avenues that target the early stages of Alzheimer's disease (AD) is urgently necessary. A disintegrin and metalloproteinase domain 10 (ADAM10) is a sheddase that is involved in dendritic spine shaping and limits the generation of amyloid-ß. ADAM10 endocytosis increases in the hippocampus of AD patients, resulting in the decreased postsynaptic localization of the enzyme. To restore this altered pathway, we developed a cell-permeable peptide (PEP3) with a strong safety profile that is able to interfere with ADAM10 endocytosis, upregulating the postsynaptic localization and activity of ADAM10. After extensive validation, experiments in a relevant animal model clarified the optimal timing of the treatment window. PEP3 administration was effective for the rescue of cognitive defects in APP/PS1 mice only if administered at an early disease stage. Increased ADAM10 activity promoted synaptic plasticity, as revealed by changes in the molecular compositions of synapses and the spine morphology. Even though further studies are required to evaluate efficacy and safety issues of long-term administration of PEP3, these results provide preclinical evidence to support the therapeutic potential of PEP3 in AD.


Assuntos
Doença de Alzheimer , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Endocitose , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Sinapses/metabolismo
5.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982693

RESUMO

Dopamine (DA) is a key neurotransmitter in the basal ganglia, implicated in the control of movement and motivation. Alteration of DA levels is central in Parkinson's disease (PD), a common neurodegenerative disorder characterized by motor and non-motor manifestations and deposition of alpha-synuclein (α-syn) aggregates. Previous studies have hypothesized a link between PD and viral infections. Indeed, different cases of parkinsonism have been reported following COVID-19. However, whether SARS-CoV-2 may trigger a neurodegenerative process is still a matter of debate. Interestingly, evidence of brain inflammation has been described in postmortem samples of patients infected by SARS-CoV-2, which suggests immune-mediated mechanisms triggering the neurological sequelae. In this review, we discuss the role of proinflammatory molecules such as cytokines, chemokines, and oxygen reactive species in modulating DA homeostasis. Moreover, we review the existing literature on the possible mechanistic interplay between SARS-CoV-2-mediated neuroinflammation and nigrostriatal DAergic impairment, and the cross-talk with aberrant α-syn metabolism.


Assuntos
COVID-19 , Doença de Parkinson , Humanos , Dopamina/metabolismo , Doenças Neuroinflamatórias , SARS-CoV-2/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
6.
Pharmacol Res ; 183: 106375, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35918045

RESUMO

Toxic aggregates of α-synuclein (αsyn) are considered key drivers of Parkinson's disease (PD) pathology. In early PD, αsyn induces synaptic dysfunction also modulating the glutamatergic neurotransmission. However, a more detailed understanding of the molecular mechanisms underlying αsyn-triggered synaptic failure is required to design novel therapeutic interventions. Here, we described the role of Rabphilin-3A (Rph3A) as novel target to counteract αsyn-induced synaptic loss in PD. Rph3A is a synaptic protein interacting with αsyn and involved in stabilizing dendritic spines and in promoting the synaptic retention of NMDA-type glutamate receptors. We found that in vivo intrastriatal injection of αsyn-preformed fibrils in mice induces the early loss of striatal synapses associated with decreased synaptic levels of Rph3A and impaired Rph3A/NMDA receptors interaction. Modulating Rph3A striatal expression or interfering with the Rph3A/αsyn complex with a small molecule prevented dendritic spine loss and rescued associated early motor defects in αsyn-injected mice. Notably, the same experimental approaches prevented αsyn-induced synaptic loss in vitro in primary hippocampal neurons. Overall, these findings indicate that approaches aimed at restoring Rph3A synaptic functions can slow down the early synaptic detrimental effects of αsyn aggregates in PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Camundongos , Proteínas do Tecido Nervoso , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas de Transporte Vesicular/metabolismo , alfa-Sinucleína/metabolismo , Rabfilina-3A
7.
Brain ; 144(11): 3477-3491, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34297092

RESUMO

Misfolding and aggregation of α-synuclein are specific features of Parkinson's disease and other neurodegenerative diseases defined as synucleinopathies. Parkinson's disease progression has been correlated with the formation and extracellular release of α-synuclein aggregates, as well as with their spread from neuron to neuron. Therapeutic interventions in the initial stages of Parkinson's disease require a clear understanding of the mechanisms by which α-synuclein disrupts the physiological synaptic and plastic activity of the basal ganglia. For this reason, we identified two early time points to clarify how the intrastriatal injection of α-synuclein-preformed fibrils in rodents via retrograde transmission induces time-dependent electrophysiological and behavioural alterations. We found that intrastriatal α-synuclein-preformed fibrils perturb the firing rate of dopaminergic neurons in the substantia nigra pars compacta, while the discharge of putative GABAergic cells of the substantia nigra pars reticulata is unchanged. The α-synuclein-induced dysregulation of nigrostriatal function also impairs, in a time-dependent manner, the two main forms of striatal synaptic plasticity, long-term potentiation and long-term depression. We also observed an increased glutamatergic transmission measured as an augmented frequency of spontaneous excitatory synaptic currents. These changes in neuronal function in the substantia nigra pars compacta and striatum were observed before overt neuronal death occurred. In an additional set of experiments, we were able to rescue α-synuclein-induced alterations of motor function, striatal synaptic plasticity and increased spontaneous excitatory synaptic currents by subchronic treatment with l-DOPA, a precursor of dopamine widely used in the therapy of Parkinson's disease, clearly demonstrating that a dysfunctional dopamine system plays a critical role in the early phases of the disease.


Assuntos
Plasticidade Neuronal/fisiologia , Doença de Parkinson/fisiopatologia , Substância Negra/fisiopatologia , Transmissão Sináptica/fisiologia , alfa-Sinucleína/toxicidade , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Masculino , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo
8.
Neurodegener Dis ; 22(1): 7-14, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35940118

RESUMO

INTRODUCTION: Although neurofilaments are mainly expressed in large caliber myelinated axons, recent evidence supports the existence of a specific synaptic pool, where neurofilament light chain (NfL) has been proposed to stabilize NMDA receptor (NMDAR) at postsynaptic membrane through a direct interaction with the GluN1 subunit. Here, we assessed the expression and synaptic abundance of neurofilaments and their interaction with NMDAR in experimental α-synucleinopathy models. METHODS: We used confocal imaging and biochemical approaches to confirm NMDAR-NfL interaction at synapses. Western blotting in purified fractions and co-immunoprecipitation assays were then performed to assess synaptic neurofilament expression and GluN1-NfL interaction in (i) α-synuclein pre-formed fibrils (α-syn PFF)-treated hippocampal neuronal cultures and (ii) mice intrastriatally injected with α-syn-PFF. RESULTS: We identified the existence of a direct protein-protein interaction between NMDAR and NfL endogenously expressed in neurons. Our findings showed increased striatal GluN1-NfL interaction levels at early phases of α-syn PFF-treated mice compared to controls (NfL/GluN1 optical density: α-syn PFF 0.71 ± 0.04; controls 0.48 ± 0.03; t(9) = 4.67; p = 0.001). In agreement with this observation, we found that NfL levels are increased in striatal postsynaptic fractions of α-syn PFF-treated mice (normalized optical density: α-syn PFF 1.86 ± 0.14; controls 1.34 ± 0.13; t(18) = 2.70; p = 0.015). CONCLUSIONS: Our results demonstrate alterations of striatal synaptic neurofilament pool in α-synucleinopathy models and open the way to further investigations evaluating a potential role of neurofilament dysregulation in explaining glutamatergic synaptic dysfunction observed in α-synucleinopathies such as Parkinson's disease.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , Camundongos , Filamentos Intermediários/metabolismo , alfa-Sinucleína/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Modelos Teóricos
9.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163460

RESUMO

Schizophrenia (SCZ) is a mental illness characterized by aberrant synaptic plasticity and connectivity. A large bulk of evidence suggests genetic and functional links between postsynaptic abnormalities and SCZ. Here, we performed quantitative PCR and Western blotting analysis in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of SCZ patients to investigate the mRNA and protein expression of three key spine shapers: the actin-binding protein cyclase-associated protein 2 (CAP2), the sheddase a disintegrin and metalloproteinase 10 (ADAM10), and the synapse-associated protein 97 (SAP97). Our analysis of the SCZ post-mortem brain indicated increased DLG1 mRNA in DLPFC and decreased CAP2 mRNA in the hippocampus of SCZ patients, compared to non-psychiatric control subjects, while the ADAM10 transcript was unaffected. Conversely, no differences in CAP2, SAP97, and ADAM10 protein levels were detected between SCZ and control individuals in both brain regions. To assess whether DLG1 and CAP2 transcript alterations were selective for SCZ, we also measured their expression in the superior frontal gyrus of patients affected by neurodegenerative disorders, like Parkinson's and Alzheimer's disease. Interestingly, also in Parkinson's disease patients, we found a selective reduction of CAP2 mRNA levels relative to controls but unaltered protein levels. Taken together, we reported for the first time altered CAP2 expression in the brain of patients with psychiatric and neurological disorders, thus suggesting that aberrant expression of this gene may contribute to synaptic dysfunction in these neuropathologies.


Assuntos
Proteína ADAM10/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Proteína 1 Homóloga a Discs-Large/genética , Proteínas de Membrana/genética , Doença de Parkinson/genética , Esquizofrenia/genética , Proteína ADAM10/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Autopsia , Estudos de Casos e Controles , Proteína 1 Homóloga a Discs-Large/metabolismo , Córtex Pré-Frontal Dorsolateral/metabolismo , Feminino , Regulação da Expressão Gênica , Hipocampo/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Esquizofrenia/metabolismo
10.
Neurobiol Dis ; 161: 105539, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34743951

RESUMO

In the mammalian brain, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) play a fundamental role in the activation of excitatory synaptic transmission and the induction of different forms of synaptic plasticity. The modulation of the AMPAR tetramer subunit composition at synapses defines the functional properties of the receptor. During the last twenty years, several studies have evaluated the roles played by each subunit, from GluA1 to GluA4, in both physiological and pathological conditions. Here, we have focused our attention on GluA3-containing AMPARs, addressing their functional role in synaptic transmission and synaptic plasticity and their involvement in a variety of brain disorders. Although several aspects remain to be fully understood, GluA3 is a widely expressed and functionally relevant subunit in AMPARs involved in several brain circuits, and its pharmacological modulation could represent a novel approach for the rescue of altered glutamatergic synapses associated with neurodegenerative and neurodevelopmental disorders.


Assuntos
Encefalopatias , Receptores de AMPA , Animais , Mamíferos/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
11.
Mov Disord ; 36(10): 2254-2263, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339069

RESUMO

BACKGROUND: In experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of synaptic alterations that depend on progressive changes in N-methyl-D-aspartate receptors (NMDAR)-mediated functions. Repetitive transcranial magnetic stimulation (rTMS) induces modifications in glutamatergic and dopaminergic systems, suggesting that it may have an impact on glutamatergic synapses modulated by dopamine neurotransmission. However, no studies have so far explored the mechanisms of rTMS effects at early stages of PD. OBJECTIVES: We tested the hypothesis that in vivo application of rTMS with intermittent theta-burst stimulation (iTBS) pattern alleviates corticostriatal dysfunctions by modulating NMDAR-dependent plasticity in a rat model of early parkinsonism. METHODS: Dorsolateral striatal spiny projection neurons (SPNs) activity was studied through ex vivo whole-cell patch-clamp recordings in corticostriatal slices obtained from 6-hydroxydopamine-lesioned rats, subjected to a single session (acute) of iTBS and tested for forelimb akinesia with the stepping test. Immunohistochemical analyses were performed to analyze morphological correlates of plasticity in SPNs. RESULTS: Acute iTBS ameliorated limb akinesia and rescued corticostriatal long-term potentiation (LTP) in SPNs of partially lesioned rats. This effect was abolished by applying a selective inhibitor of GluN2B-subunit-containing NMDAR, suggesting that iTBS treatment could be associated with an enhanced activation of specific NMDAR subunits, which are major regulators of structural plasticity during synapse development. Morphological analyses of SPNs revealed that iTBS treatment reverted dendritic spine loss inducing a prevalence of thin-elongated spines in the biocytin-filled SPNs. CONCLUSIONS: Taken together, our data identify that an acute iTBS treatment produces a series of plastic changes underlying striatal compensatory adaptation in the parkinsonian basal ganglia circuit. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Dopamina , Estimulação Magnética Transcraniana , Animais , Corpo Estriado , Plasticidade Neuronal , Ratos , Sinapses
12.
Brain Behav Immun ; 97: 89-101, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246733

RESUMO

Autoantibodies targeting the GluA3 subunit of AMPA receptors (AMPARs) have been found in patients with Rasmussen's encephalitis and different types of epilepsy and were associated with the presence of learning and attention deficits. Our group recently identified the presence of anti-GluA3 immunoglobulin G (IgG) in about 25% of patients with frontotemporal dementia (FTD), thus suggesting a novel pathogenetic role also in chronic neurodegenerative diseases. However, the in vivo behavioral, molecular and morphological effects induced these antibodies are still unexplored. We injected anti-GluA3 IgG purified from the serum of FTD patients, or control IgG, in mice by intracerebroventricular infusion. Biochemical analyses showed a reduction of synaptic levels of GluA3-containing AMPARs in the prefrontal cortex (PFC), and not in the hippocampus. Accordingly, animals injected with anti-GluA3 IgG showed significant changes in recognition memory and impairments in social behavior and in social cognitive functions. As visualized by confocal imaging, functional outcomes were paralleled by profound alterations of dendritic spine morphology in the PFC. All observed behavioral, molecular and morphological alterations were transient and not detected 10-14 days from anti-GluA3 IgG injection. Overall, our in vivo preclinical data provide novel insights into autoimmune encephalitis associated with anti-GluA3 IgG and indicate an additional pathological mechanism affecting the excitatory synapses in FTD patients carrying anti-GluA3 IgG that could contribute to clinical symptoms.


Assuntos
Autoanticorpos , Receptores de AMPA , Animais , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos , Receptores de AMPA/metabolismo , Sinapses/metabolismo
13.
J Neurochem ; 155(6): 638-649, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32343420

RESUMO

We investigated the molecular events triggered by NMDA and 3,5-dihydroxyphenylglycine (DHPG) preconditioning, that lead to neuroprotection against excitotoxic insults (AMPA or oxygen and glucose deprivation) in rat organotypic hippocampal slices, with particular attention on glutamate receptors and on cannabinoid system. We firstly evaluated the protein expression of NMDA and AMPA receptor subunits after preconditioning using western blot analysis performed in post-synaptic densities. We observed that following NMDA, but not DHPG preconditioning, the expression of GluA1 was significantly reduced and this reduction appeared to be associated with the internalization of AMPA receptors. Whole-cell voltage clamp recordings on CA1 pyramidal neurons of organotypic slices show that 24 hr after exposure to NMDA and DHPG preconditioning, AMPA-induced currents were significantly reduced. To clarify the mechanisms induced by DHPG preconditioning, we then investigated the involvement of the endocannabinoid system. Exposure of slices to the CB1 antagonist AM251 prevented the development of tolerance to AMPA toxicity induced by DHPG but not NMDA. Accordingly, the MAG-lipase inhibitor URB602, that increases arachidonoylglycerol (2-AG) content, but not the FAAH inhibitor URB597, that limits the degradation of anandamide, was also able to induce tolerance versus AMPA and OGD toxicity, suggesting that 2-AG is responsible for the DHPG-induced tolerance. In conclusion, preconditioning with NMDA or DHPG promotes differential neuroprotective mechanisms: NMDA by internalization of GluA1-AMPA receptors, DHPG by producing the endocannabinoid 2-AG.


Assuntos
Tolerância a Medicamentos/fisiologia , Glicina/análogos & derivados , Hipocampo/metabolismo , Precondicionamento Isquêmico/métodos , N-Metilaspartato/farmacologia , Neuroproteção/fisiologia , Resorcinóis/farmacologia , Animais , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Glucose/deficiência , Glicina/farmacologia , Hipocampo/irrigação sanguínea , Hipocampo/efeitos dos fármacos , Masculino , Neuroproteção/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo
14.
Neurobiol Dis ; 140: 104848, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32222474

RESUMO

Energy depletion caused by ischemic brain insults may result in persistent neuronal depolarization accompanied by hyper-stimulation of ionotropic glutamate receptors and excitotoxic phenomena, possibly leading to cell death. The use of glutamate receptor antagonists, such as the AMPARs antagonist Perampanel (PER), might be a pharmacological approach to counteract the excessive over-activation of glutamate receptors providing neuroprotective effects. Using electrophysiological and molecular analyses, we investigated the effect of PER against in vitro ischemia obtained by oxygen and glucose deprivation (OGD) in rat slices of two brain structures particularly sensitive to ischemic insults, the nucleus striatum and the hippocampus. We found that in these regions PER was able to avoid the OGD-induced neuronal suffering, at low doses not reducing basal excitatory synaptic transmission and not altering long-term potentiation (LTP) induction. Furthermore, in both the analysed regions, PER blocked a pathological form of LTP, namely ischemic LTP (iLTP). Finally, we hypothesized that the protective effect of PER against OGD was due to its capability to normalize the altered synaptic localization and function of AMPAR subunits, occuring after an ischemic insult. Taken together these findings support the idea that PER is a drug potentially effective to counteract ischemic damage.


Assuntos
Isquemia Encefálica/fisiopatologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Piridonas/farmacologia , Receptores de AMPA/metabolismo , Animais , Morte Celular , Corpo Estriado/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores , Nitrilas , Ratos , Ratos Wistar , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia
15.
Pharmacol Res ; 160: 105185, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32891865

RESUMO

Protease-activated receptor 1 (PAR1) is a G protein-coupled receptor (GPCR), whose activation requires a proteolytic cleavage in the extracellular domain exposing a tethered ligand, which binds to the same receptor thus stimulating Gαq/11-, Gαi/o- and Gα12-13 proteins. PAR1, activated by serine proteases and matrix metalloproteases, plays multifaceted roles in neuroinflammation and neurodegeneration, in stroke, brain trauma, Alzheimer's diseases, and Parkinson's disease (PD). Substantia nigra pars compacta (SNpc) is among areas with highest PAR1 expression, but current evidence on its roles herein is restricted to mechanisms controlling dopaminergic (DAergic) neurons survival, with controversial data showing PAR1 either fostering or counteracting degeneration in PD models. Since PAR1 functions on SNpc DAergic neurons activity are unknown, we investigated if PAR1 affects glutamatergic transmission in this neuronal population. We analyzed PAR1's effects on NMDARs and AMPARs by patch-clamp recordings from DAergic neurons from mouse midbrain slices. Then, we explored subunit composition of PAR1-sensitive NMDARs, with selective antagonists, and mechanisms underlying PAR1-induced NMDARs modulation, by quantifying NMDARs surface expression. PAR1 activation inhibits synaptic NMDARs in SNpc DAergic neurons, without affecting AMPARs. PAR1-sensitive NMDARs contain GluN2B/GluN2D subunits. Moreover, PAR1-mediated NMDARs hypofunction is reliant on NMDARs internalization, as PAR1 stimulation increases NMDARs intracellular levels and pharmacological limitation of NMDARs endocytosis prevents PAR1-induced NMDARs inhibition. We reveal that PAR1 regulates glutamatergic transmission in midbrain DAergic cells. This might have implications in brain's DA-dependent functions and in neurological/psychiatric diseases linked to DAergic dysfunctions.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Receptor PAR-1/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Substância Negra/citologia , Substância Negra/efeitos dos fármacos , Animais , Sobrevivência Celular , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/genética
16.
Brain ; 142(5): 1365-1385, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30927362

RESUMO

Parkinson's disease is a progressive neurodegenerative disorder characterized by altered striatal dopaminergic signalling that leads to motor and cognitive deficits. Parkinson's disease is also characterized by abnormal presence of soluble toxic forms of α-synuclein that, when clustered into Lewy bodies, represents one of the pathological hallmarks of the disease. However, α-synuclein oligomers might also directly affect synaptic transmission and plasticity in Parkinson's disease models. Accordingly, by combining electrophysiological, optogenetic, immunofluorescence, molecular and behavioural analyses, here we report that α-synuclein reduces N-methyl-d-aspartate (NMDA) receptor-mediated synaptic currents and impairs corticostriatal long-term potentiation of striatal spiny projection neurons, of both direct (D1-positive) and indirect (putative D2-positive) pathways. Intrastriatal injections of α-synuclein produce deficits in visuospatial learning associated with reduced function of GluN2A NMDA receptor subunit indicating that this protein selectively targets this subunit both in vitro and ex vivo. Interestingly, this effect is observed in spiny projection neurons activated by optical stimulation of either cortical or thalamic glutamatergic afferents. We also found that treatment of striatal slices with antibodies targeting α-synuclein prevents the α-synuclein-induced loss of long-term potentiation and the reduced synaptic localization of GluN2A NMDA receptor subunit suggesting that this strategy might counteract synaptic dysfunction occurring in Parkinson's disease.


Assuntos
Corpo Estriado/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Memória Espacial/fisiologia , Sinapses/fisiologia , Percepção Visual/fisiologia , alfa-Sinucleína/toxicidade , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Memória Espacial/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Percepção Visual/efeitos dos fármacos , alfa-Sinucleína/administração & dosagem
17.
Int J Mol Sci ; 21(4)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102377

RESUMO

N-Methyl-d-Aspartate Receptors (NMDARs) are ionotropic glutamate-gated receptors. NMDARs are tetramers composed by several homologous subunits of GluN1-, GluN2-, or GluN3-type, leading to the existence in the central nervous system of a high variety of receptor subtypes with different pharmacological and signaling properties. NMDAR subunit composition is strictly regulated during development and by activity-dependent synaptic plasticity. Given the differences between GluN2 regulatory subunits of NMDAR in several functions, here we will focus on the synaptic pool of NMDARs containing the GluN2A subunit, addressing its role in both physiology and pathological synaptic plasticity as well as the contribution in these events of different types of GluN2A-interacting proteins.


Assuntos
Sistema Nervoso Central/metabolismo , Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Humanos , Ligação Proteica , Subunidades Proteicas/metabolismo , Transdução de Sinais
18.
Neurobiol Dis ; 121: 338-349, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30261285

RESUMO

In the striatum, specific N-methyl-d-aspartate receptor (NMDAR) subtypes are found in different neuronal cells. Spiny projection neurons (SPNs) are characterized by NMDARs expressing GluN2A and GluN2B subunits, while GluN2D is exclusively detected in striatal cholinergic interneurons (ChIs). In Parkinson's disease (PD), dopamine depletion and prolonged treatment with levodopa (L-DOPA) trigger adaptive changes in the glutamatergic transmission from the cortex to the striatum, also resulting in the aberrant function of striatal NMDARs. While modifications of GluN2A- and GluN2B-NMDARs in SPNs have been extensively documented, only few studies report GluN2D dysfunction in PD and no data are available in L-DOPA-induced dyskinesia (LID). Here we investigate the contribution of a specific NMDAR subtype (GluN2D-NMDAR) to PD and LID, and whether this receptor could represent a candidate for future pharmacological interventions. Our results show that GluN2D synaptic abundance is selectively augmented in the striatum of L-DOPA-treated male parkinsonian rats displaying a dyskinetic phenotype. This event is associated to a dramatic increase in GluN2D binding to the postsynaptic protein scaffold PSD-95. Moreover, immunohistochemistry and electrophysiology experiments reveal that GluN2D-NMDARs are expressed not only by striatal ChIs but also by SPNs in dyskinetic rats. Notably, in vivo treatment with a well-characterized GluN2D antagonist ameliorates the severity of established dyskinesia in L-DOPA-treated animals. Our findings support a role for GluN2D-NMDARs in LID, and they confirm that cell-type and subunit specific modifications of NMDARs underlie the pathophysiology of LID.


Assuntos
Corpo Estriado/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Neurônios Colinérgicos/metabolismo , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Interneurônios/metabolismo , Levodopa/administração & dosagem , Macaca mulatta , Masculino , Ratos Sprague-Dawley , Sinapses/metabolismo
19.
J Neural Transm (Vienna) ; 125(8): 1225-1236, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29387966

RESUMO

Overactivation of the glutamatergic synapse leading to maladaptive synaptic plasticity in the basal ganglia is a well-demonstrated process involved in the onset of L-DOPA-induced dyskinesia (LID). Changes in glutamate release are paralleled by compensatory modifications of the expression and/or synaptic localization of both ionotropic and metabotropic glutamate receptors (mGluRs). Accordingly, compounds targeting N-methyl-D-aspartate glutamate receptors (NMDARs) and specific subtypes of metabotropic glutamate receptors (mGluR4 and mGluR5) have been tested both in preclinical and clinical studies. At present, amantadine, a low-affinity non-competitive NMDAR antagonist, represents the only recommended add-on agent with a moderate anti-dyskinetic activity. The present review describes recent advances in basic research, preclinical and early clinical studies in the attempt of identifying innovative strategies for an accurate modulation of both pre- and postsynaptic glutamate receptors to reduce the severity of LID. Even if a complete understanding of LID molecular bases is still lacking, several compounds demonstrated an anti-dyskinetic activity in preclinical and early clinical studies. These results indicate that modulation of the glutamatergic system remains one of the most promising pharmacological strategies in the field.


Assuntos
Discinesia Induzida por Medicamentos/metabolismo , Ácido Glutâmico/metabolismo , Receptores de Glutamato/metabolismo , Animais , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/fisiopatologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Humanos , Levodopa/efeitos adversos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de Glutamato/efeitos dos fármacos
20.
J Neurosci ; 36(37): 9558-71, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27629708

RESUMO

UNLABELLED: Although we are beginning to understand the late stage of neurodegenerative diseases, the molecular defects associated with the initiation of impaired cognition are poorly characterized. Here, we demonstrate that in the adult brain, the coxsackievirus and adenovirus receptor (CAR) is located on neuron projections, at the presynapse in mature neurons, and on the soma of immature neurons in the hippocampus. In a proinflammatory or diseased environment, CAR is lost from immature neurons in the hippocampus. Strikingly, in hippocampi of patients at early stages of late-onset Alzheimer's disease (AD), CAR levels are significantly reduced. Similarly, in triple-transgenic AD mice, CAR levels in hippocampi are low and further reduced after systemic inflammation. Genetic deletion of CAR from the mouse brain triggers deficits in adult neurogenesis and synapse homeostasis that lead to impaired hippocampal plasticity and cognitive deficits. We propose that post-translational CAR loss of function contributes to cognitive defects in healthy and diseased-primed brains. SIGNIFICANCE STATEMENT: This study addressed the role of the coxsackievirus and adenovirus receptor (CAR), a single-pass cell adhesion molecule, in the adult brain. Our results demonstrate that CAR is expressed by mature neurons throughout the brain. In addition, we propose divergent roles for CAR in immature neurons, during neurogenesis, and at the mature synapse. Notably, CAR loss of function also affects hippocampal plasticity.


Assuntos
Doença de Alzheimer/patologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/deficiência , Hipocampo/patologia , Neurogênese/genética , Plasticidade Neuronal/genética , Sinapses/metabolismo , Fatores Etários , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Animais , Células Cultivadas , Transtornos Cognitivos/etiologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Nestina/genética , Nestina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA