Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nutr ; 62(5): 2279-2292, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093261

RESUMO

PURPOSE: Garlic consumption has been inversely associated to intestinal adenoma (IA) and colorectal cancer (CRC) risk, although evidence is not consistent. Gut microbiota has been implied in CRC pathogenesis and is also influenced by garlic consumption. We analyzed whether dietary garlic influence CRC risk and bacterial DNA in blood. METHODS: We conducted a case-control study in Italy involving 100 incident CRC cases, 100 IA and 100 healthy controls matched by center, sex and age. We used a validated food frequency questionnaire to assess dietary habits and garlic consumption. Blood bacterial DNA profile was estimated using qPCR and16S rRNA gene profiling. We derived odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) of IA and CRC according to garlic consumption from multiple conditional logistic regression. We used Mann-Whitney and chi-square tests to evaluate taxa differences in abundance and prevalence. RESULTS: The OR of CRC for medium/high versus low/null garlic consumption was 0.27 (95% CI = 0.11-0.66). Differences in garlic consumption were found for selected blood bacterial taxa. Medium/high garlic consumption was associated to an increase of Corynebacteriales order, Nocardiaceae family and Rhodococcus genus, and to a decrease of Family XI and Finegoldia genus. CONCLUSIONS: The study adds data on the protective effect of dietary garlic on CRC risk. Moreover, it supports evidence of a translocation of bacterial material to bloodstream and corroborates the hypothesis of a diet-microbiota axis as a mechanism behind the role of garlic in CRC prevention.


Assuntos
Neoplasias Colorretais , Alho , Humanos , Alho/genética , DNA Bacteriano/genética , Estudos de Casos e Controles , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/etiologia , Dieta , Modelos Logísticos , Antioxidantes , Bactérias/genética , Fatores de Risco
2.
Eur J Nutr ; 61(3): 1209-1220, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34727202

RESUMO

PURPOSE: Aging can be characterized by increased systemic low-grade inflammation, altered gut microbiota composition, and increased intestinal permeability (IP). The intake of polyphenol-rich foods is proposed as a promising strategy to positively affect the gut microbiota-immune system-intestinal barrier (IB) axis. In this context, we tested the hypothesis that a PR-dietary intervention would affect the presence of bacterial factors in the bloodstream of older adults. METHODS: We collected blood samples within a randomized, controlled, crossover intervention trial in which older volunteers (n = 51) received a polyphenol-enriched and a control diet. We quantified the presence of bacterial DNA in blood by qPCR targeting the 16S rRNA gene (16S; bacterial DNAemia). Blood DNA was taxonomically profiled via 16S sequencing. RESULTS: Higher blood 16S levels were associated with higher BMI and markers of IP, inflammation, and dyslipidemia. PR-intervention did not significantly change bacterial DNAemia in the older population (P = 0.103). Nonetheless, the beneficial changes caused by the polyphenol-enriched diet were greatest in participants with higher bacterial DNAemia, specifically in markers related to IP, inflammation and dyslipidemia, and in fecal bacterial taxa. Finally, we found that the bacterial DNA detected in blood mostly belonged to γ-Proteobacteria, whose abundance significantly decreased after the polyphenol-rich diet in subjects with higher bacterial DNAemia at baseline. CONCLUSIONS: This study shows that older subjects with higher bacterial DNAemia experienced a beneficial effect from a polyphenol-rich diet. Bacterial DNAemia may be a further relevant marker for the identification of target populations that could benefit more from a protective dietary treatment. REGISTRATION: This trial was retrospectively registered at www.isrctn.org (ISRCTN10214981) on April 28, 2017.


Assuntos
Doenças Cardiovasculares , Polifenóis , Idoso , Biomarcadores , Doenças Cardiovasculares/prevenção & controle , Dieta , Fezes/microbiologia , Fatores de Risco de Doenças Cardíacas , Humanos , Permeabilidade , Polifenóis/farmacologia , RNA Ribossômico 16S/genética , Fatores de Risco
3.
Pharmacol Res ; 172: 105795, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339837

RESUMO

Neuroinflammation can severely affect brain homeostasis and adult hippocampal neurogenesis with detrimental effects on cognitive processes. Brain and gut are intimately connected via the "gut-brain axis", a bidirectional communication system, and the administration of live bacteria (probiotics) has been shown to represent an intriguing approach for the prevention or even the cure of several diseases. In the present study we evaluated the putative neuroprotective effect of 15-days consumption of a multi-strain probiotic formulation based on food-associated strains and human gut bacteria at the dose of 109 CFU/mouse/day in a mouse model of acute inflammation, induced by an intraperitoneal single injection of LPS (0.1 mg/kg) at the end of probiotic administration. The results indicate that the prolonged administration of the multi-strain probiotic formulation not only prevents the LPS-dependent increase of pro-inflammatory cytokines in specific regions of the brain (hippocampus and cortex) and in the gastrointestinal district but also triggers a potent proneurogenic response capable of enhancing hippocampal neurogenesis. This effect is accompanied by a potentiation of intestinal barrier, as documented by the increased epithelial junction expression in the colon. Our hypothesis is that pre-treatment with the multi-strain probiotic formulation helps to create a systemic protection able to counteract or alleviate the effects of LPS-dependent acute pro-inflammatory responses.


Assuntos
Anti-Inflamatórios/uso terapêutico , Eixo Encéfalo-Intestino , Doenças Neuroinflamatórias/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Probióticos , Animais , Ansiedade , Encéfalo/citologia , Caderinas/metabolismo , Colo/metabolismo , Citocinas/genética , Modelos Animais de Doenças , Comportamento Exploratório , Comportamento de Doença , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Neurogênese , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/microbiologia , Ocludina/metabolismo
4.
BMC Geriatr ; 20(1): 77, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32102662

RESUMO

BACKGROUND: During aging, alterations of the intestinal microbial ecosystem can occur contributing to immunosenescence, inflamm-aging and impairment of intestinal barrier function (increased intestinal permeability; IP). In the context of a diet-microbiota-IP axis in older subjects, food bioactives such as polyphenols may play a beneficial modulatory role. METHODS: MaPLE is a project centered on a randomized, controlled cross-over dietary intervention trial [polyphenol-rich diet (PR-diet) versus control diet (C-diet)] targeted to older people (≥ 60 y) living in a well-controlled setting (i.e. nursing home). The 8-week interventions are separated by an 8-week wash-out period. Three small portions per day of selected polyphenol-rich foods are consumed during intervention in substitution of other comparable products within the C-diet. Biological samples are collected before and after each treatment period to evaluate markers related to IP, inflammation, vascular function, oxidative stress, gut and blood microbiomics, metabolomics. A sample size of 50 subjects was defined based on IP as primary outcome. DISCUSSION: Evidence that increasing the consumption of polyphenol-rich food products can positively affect intestinal microbial ecosystem resulting in reduced IP and decreased translocation of inflammogenic bacterial factors into the bloodstream will be provided. The integration of data from gut and blood microbiomics, metabolomics and other IP-related markers will improve the understanding of the beneficial effect of the intervention in the context of polyphenols-microbiota-IP interactions. Finally, findings obtained will provide a proof of concept of the reliability of the dietary intervention, also contributing to future implementations of dietary guidelines directed to IP management in the older and other at risk subjects. TRIAL REGISTRATION: The trial is registered at (ISRCTN10214981); April 28, 2017.


Assuntos
Polifenóis/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Dieta , Microbioma Gastrointestinal , Humanos , Microbiota , Pessoa de Meia-Idade , Permeabilidade , Reprodutibilidade dos Testes
5.
Appl Environ Microbiol ; 85(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824443

RESUMO

Surface layers (S-layers) are proteinaceous arrays covering the cell walls of numerous bacteria. Their suggested properties, such as interactions with the host immune system, have been only poorly described. Here, we aimed to elucidate the role of the S-layer from the probiotic bacterial strain Lactobacillus helveticus MIMLh5 in the stimulation of murine bone-marrow-derived dendritic cells (DCs). MIMLh5 induced greater production of interferon beta (IFN-ß), interleukin 10 (IL-10), and IL-12p70, compared to S-layer-depleted MIMLh5 (naked MIMLh5 [n-MIMLh5]), whereas the isolated S-layer was a poor immunostimulator. No differences in the production of tumor necrosis factor alpha (TNF-α) or IL-1ß were found. Inhibition of the mitogen-activated protein kinases JNK1/2, p38, and ERK1/2 modified IL-12p70 production similarly in MIMLh5 and n-MIMLh5, suggesting the induction of the same signaling pathways by the two bacterial preparations. Treatment of DCs with cytochalasin D to inhibit endocytosis before the addition of fluorescently labeled MIMLh5 cells led to a dramatic reduction in the proportion of fluorescence-positive DCs and decreased IL-12 production. Endocytosis and IL-12 production were only marginally affected by cytochalasin D pretreatment when fluorescently labeled n-MIMLh5 was used. Treatment of DCs with fluorescently labeled S-layer-coated polystyrene beads (Sl-beads) resulted in much greater uptake of beads, compared to noncoated beads. Prestimulation of DCs with cytochalasin D reduced the uptake of Sl-beads more than plain beads. These findings indicate that the S-layer plays a role in the endocytosis of MIMLh5 by DCs. In conclusion, this study provides evidence that the S-layer of L. helveticus MIMLh5 is involved in endocytosis of the bacterium, which is important for strong Th1-inducing cytokine production.IMPORTANCE Beneficial microbes may positively affect host physiology at various levels, e.g., by participating in immune system maturation and modulation, boosting defenses and dampening reactions, thus affecting the whole homeostasis. As a consequence, the use of probiotics is increasingly regarded as suitable for more extended applications for health maintenance, not only microbiota balancing. This implies a deep knowledge of the mechanisms and molecules involved in host-microbe interactions, for the final purpose of fine tuning the choice of a probiotic strain for a specific outcome. With this aim, studies targeted to the description of strain-related immunomodulatory effects and the identification of bacterial molecules responsible for specific responses are indispensable. This study provides new insights in the characterization of the food-origin probiotic bacterium L. helveticus MIMLh5 and its S-layer protein as a driver for the cross-talk with DCs.


Assuntos
Células Dendríticas/fisiologia , Endocitose , Lactobacillus helveticus/química , Probióticos/química , Animais , Medula Óssea , Camundongos Endogâmicos C57BL
6.
Environ Microbiol ; 20(9): 3201-3213, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29749705

RESUMO

Irritable bowel syndrome (IBS), a common functional gastrointestinal disorder, is classified according to bowel habits as IBS with constipation (IBS-C), with diarrhea (IBS-D), with alternating constipation and diarrhea (IBS-M), and unsubtyped (IBS-U). The mechanisms leading to the different IBS forms are mostly unknown. This study aims to evaluate whether specific fecal bacterial taxa and/or short-chain fatty acids (SCFAs) can be used to distinguish IBS subtypes and are relevant for explaining the clinical differences between IBS subcategories. We characterized five fecal samples collected at 4-weeks intervals from 40 IBS patients by 16S rRNA gene profiling and SCFA quantification. Finally, we investigated the potential correlations in IBS subtypes between the fecal microbial signatures and host physiological and clinical parameters. We found significant differences in the distribution of Clostridiales OTUs among IBS subtypes and reduced levels of SCFAs in IBS-C compared to IBS-U and IBS-D patients. Correlation analyses showed that the diverse representation of Clostridiales OTUs between IBS subtypes was associated with altered levels of SCFAs; furthermore, the same OTUs and SCFAs were associated with the fecal cytokine levels and stool consistency. Our results suggest that intestinal Clostridiales and SCFAs might serve as potential mechanistic biomarkers of IBS subtypes and represent therapeutic targets.


Assuntos
Clostridiales/isolamento & purificação , Ácidos Graxos Voláteis/química , Fezes/química , Fezes/microbiologia , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/patologia , Adulto , Biomarcadores , Clostridiales/genética , Diarreia/microbiologia , Ácidos Graxos Voláteis/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Bacteriano/isolamento & purificação , RNA Ribossômico 16S/isolamento & purificação
7.
Int J Food Sci Nutr ; 68(3): 339-348, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27690699

RESUMO

This study aimed at characterizing the fatty acid (FA) composition of red blood cell (RBC) phospholipids in children and adolescents with primary hyperlipidemia, and to ascertain potential association with serum lipid profile and dietary factors. At this purpose, 54 probands aged 6-17 years were recruited. Subjects showed a low omega-3 index (eicosapentaenoic acid, EPA + docosahexaenoic acid, DHA <4%). Compared to males, females had a trend toward lower levels of total monounsaturated fatty acids (MUFA) and MUFA/saturated fatty acids (SFAs) ratio in RBCs. An inverse relationship between MUFA concentration in RBCs and serum cholesterol or HDL-C/triglycerides ratio was found. Omega-6 polyunsaturated fatty acids (n-6 PUFA) were positively associated to serum HDL-C levels, and inversely to dietary cholesterol. Fiber intake was positively associated with MUFA/SFA ratio. In conclusion, we provide the first experimental data on phospholipid FA composition of RBCs in hyperlipidemic children, showing sex differences and an overall low omega 3-index.


Assuntos
Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Eritrócitos/química , Ácidos Graxos Ômega-6/sangue , Hiperlipidemias/sangue , Fosfolipídeos/análise , Adolescente , Pressão Sanguínea , Índice de Massa Corporal , Peso Corporal , Criança , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Humanos , Itália , Lipoproteínas HDL/sangue , Masculino , Triglicerídeos/sangue
8.
Environ Microbiol ; 18(12): 4961-4973, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27398939

RESUMO

The potential influence of insects' feeding behaviour on their associated bacterial communities is currently a matter of debate. Using the major pest of commodities, Plodia interpunctella, as a model and adopting a culture-independent approach, the impact of different diets on the host-associated microbiota was evaluated. An analysis of similarity showed differences among the microbiotas of moths fed with five substrates and provided evidence that diet represents the only tested factor that explains this dissimilarity. Bacteria shared between food and insects provide evidence for a limited conveyance to the host of the bacteria derived from the diet; more likely, the content of carbohydrates and proteins in the diets promotes changes in the insect's microbiota. Moth microbiotas were characterized by two robust entomotypes, respectively, associated with a carbohydrate-rich diet and a protein-rich diet. These results were also confirmed by the predicted metagenome functional potential. A core microbiota, composed of six taxa, was shared between eggs and adults, regardless of the origin of the population. Finally, the identification of possible human and animal pathogens on chili and associated with the moths that feed on it highlights the possibility that these bacteria may be conveyed by moth frass.


Assuntos
Bactérias/classificação , Bactérias/genética , Dieta , Comportamento Alimentar , Microbiota/genética , Mariposas/microbiologia , Animais , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética
9.
Appl Environ Microbiol ; 82(19): 5850-9, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27451450

RESUMO

UNLABELLED: Modulation of the intestinal microbial ecosystem (IME) is a useful target to establish probiotic efficacy in a healthy population. We conducted a randomized, double-blind, crossover, and placebo-controlled intervention study to determine the impact of Bifidobacterium bifidum strain Bb on the IME of adult healthy volunteers of both sexes. High-throughput 16S rRNA gene sequencing was used to characterize the fecal microbiota before and after 4 weeks of daily probiotic cell consumption. The intake of approximately one billion live B. bifidum cells affected the relative abundance of dominant taxa in the fecal microbiota and modulated fecal butyrate levels. Specifically, Prevotellaceae (P = 0.041) and Prevotella (P = 0.034) were significantly decreased, whereas Ruminococcaceae (P = 0.039) and Rikenellaceae (P = 0.010) were significantly increased. We also observed that the probiotic intervention modulated the fecal concentrations of butyrate in a manner dependent on the initial levels of short-chain fatty acids (SCFAs). In conclusion, our study demonstrates that a single daily administration of Bifidobacterium bifidum strain Bb can significantly modify the IME in healthy (not diseased) adults. These findings demonstrate the need to reassess the notion that probiotics do not influence the complex and stable IME of a healthy individual. IMPORTANCE: Foods and supplements claimed to contain health-promoting probiotic microorganisms are everywhere these days and mainly intended for consumption by healthy people. However, it is still debated what actual effects probiotic products may have on the healthy population. In this study, we report the results of an intervention trial aimed at assessing the modifications induced in the intestinal microbial ecosystem of healthy adults from the consumption of a probiotic product. Our results demonstrate that the introduction of a probiotic product in the dietary habits of healthy people may significantly modify dominant taxa of the intestinal microbiota, resulting in the modulation of short-chain fatty acid concentrations in the gut. The overall changes witnessed in the probiotic intervention indicate a mechanism of microbiota modulation that could have potential effects on human health.


Assuntos
Bifidobacterium bifidum/fisiologia , Ácido Butírico/metabolismo , Fezes/química , Microbioma Gastrointestinal/fisiologia , Probióticos/administração & dosagem , Adulto , Estudos Cross-Over , Método Duplo-Cego , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Adulto Jovem
11.
Cell Rep Med ; : 101639, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38959887

RESUMO

Environmental enteric dysfunction (EED) is a condition associated with malnutrition that can progress to malabsorption and villous atrophy. Severe EED results in linear growth stunting, slowed neurocognitive development, and unresponsiveness to oral vaccines. Prenatal exposure to malnutrition and breast feeding by malnourished mothers replicates EED. Pups are characterized by deprivation of secretory IgA (SIgA) and altered development of the gut immune system and microbiota. Extracellular ATP (eATP) released by microbiota limits T follicular helper (Tfh) cell activity and SIgA generation in Peyer's patches (PPs). Administration of a live biotherapeutic releasing the ATP-degrading enzyme apyrase to malnourished pups restores SIgA levels and ameliorates stunted growth. SIgA is instrumental in improving the growth and intestinal immune competence of mice while they are continuously fed a malnourished diet. The analysis of microbiota composition suggests that amplification of endogenous SIgA may exert a dominant function in correcting malnourishment dysbiosis and its consequences on host organisms, irrespective of the actual microbial ecology.

12.
Microbiome ; 12(1): 29, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369490

RESUMO

BACKGROUND: Intestinal microbial composition not only affects the health of the gut but also influences centrally mediated systems involved in mood, through the "gut-brain" axis, a bidirectional communication between gut microbiota and the brain. In this context, the modulation of intestinal microbiota and its metabolites through the administration of probiotics seems to represent a very promising approach in the treatment of the central nervous system alterations. Early postnatal life is a critical period during which the brain undergoes profound and essential modulations in terms of maturation and plasticity. Maternal separation (MS), i.e., the disruption of the mother-pup interaction, represents a pivotal paradigm in the study of stress-related mood disorders, by inducing persistent changes in the immune system, inflammatory processes, and emotional behavior in adult mammals. RESULTS: We conducted experiments to investigate whether sustained consumption of a multi-strain probiotic formulation by adult male mice could mitigate the effects of maternal separation. Our data demonstrated that the treatment with probiotics was able to totally reverse the anxiety- and depressive-like behavior; normalize the neuro-inflammatory state, by restoring the resting state of microglia; and finally induce a proneurogenic effect. Mice subjected to maternal separation showed changes in microbiota composition compared to the control group that resulted in permissive colonization by the administered multi-strain probiotic product. As a consequence, the probiotic treatment also significantly affected the production of SCFA and in particular the level of butyrate. CONCLUSION: Gut microbiota and its metabolites mediate the therapeutic action of the probiotic mix on MS-induced brain dysfunctions. Our findings extend the knowledge on the use of probiotics as a therapeutic tool in the presence of alterations of the emotional sphere that significantly impact on gut microbiota composition. Video Abstract.


Assuntos
Depressão , Probióticos , Camundongos , Masculino , Animais , Depressão/tratamento farmacológico , Privação Materna , Ansiedade/terapia , Encéfalo , Probióticos/uso terapêutico , Probióticos/farmacologia , Mamíferos
13.
Gut Microbes ; 16(1): 2298246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38178601

RESUMO

Probiotics are exploited for adjuvant treatment in IBS, but reliable guidance for selecting the appropriate probiotic to adopt for different forms of IBS is lacking. We aimed to identify markers for recognizing non-constipated (NC) IBS patients that may show significant clinical improvements upon treatment with the probiotic strain Lacticaseibacillus paracasei DG (LDG). To this purpose, we performed a post-hoc analysis of samples collected during a multicenter, double-blind, parallel-group, placebo-controlled trial in which NC-IBS patients were randomized to receive at least 24 billion CFU LDG or placebo capsules b.i.d. for 12 weeks. The primary clinical endpoint was the composite response based on improved abdominal pain and fecal type. The fecal microbiome and serum markers of intestinal (PV1 and zonulin), liver, and kidney functions were investigated. We found that responders (R) in the probiotic arm (25%) differed from non-responders (NR) based on the abundance of 18 bacterial taxa, including the families Coriobacteriaceae, Dorea spp. and Collinsella aerofaciens, which were overrepresented in R patients. These taxa also distinguished R (but not NR) patients from healthy controls. Probiotic intervention significantly reduced the abundance of these bacteria in R, but not in NR. Analogous results emerged for C. aerofaciens from the analysis of data from a previous trial on IBS with the same probiotic. Finally, C. aerofaciens was positively correlated with the plasmalemmal vesicle associated protein-1 (PV-1) and the markers of liver function. In conclusion, LDG is effective on NC-IBS patients with NC-IBS with a greater abundance of potential pathobionts. Among these, C. aerofaciens has emerged as a potential predictor of probiotic efficacy.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Probióticos , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/microbiologia , Resultado do Tratamento , Constipação Intestinal , Probióticos/uso terapêutico , Eubacterium , Método Duplo-Cego , Diarreia/microbiologia
14.
Nutrients ; 16(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38398877

RESUMO

Advanced glycation end products (AGEs) exert a key pathogenic role in the development of obesity and insulin resistance. Thanks to its abundance in bioactive compounds, the microalga Arthrospira platensis (spirulina, SP) is proposed as a nutritional supplement. Here, we investigated the potential anti-glycating properties of SP enriched with zinc (Zn-SP) and the following impact on diet-induced metabolic derangements. Thirty male C57Bl6 mice were fed a standard diet (SD) or a high-fat high-sugar diet (HFHS) for 12 weeks, and a subgroup of HFHS mice received 350 mg/kg Zn-SP three times a week. A HFHS diet induced obesity and glucose intolerance and increased plasma levels of pro-inflammatory cytokines and transaminases. Zn-SP administration restored glucose homeostasis and reduced hepatic dysfunction and systemic inflammation. In the liver of HFHS mice, a robust accumulation of AGEs was detected, paralleled by increased expression of the main AGE receptor (RAGE) and depletion of glyoxalase-1, whereas Zn-SP administration efficiently prevented these alterations reducing local pro-inflammatory responses. 16S rRNA gene profiling of feces and ileum content revealed altered bacterial community structure in HFHS mice compared to both SD and HFHS + Zn-SP groups. Overall, our study demonstrates relevant anti-glycation properties of Zn-SP which contribute to preventing AGE production and/or stimulate AGE detoxification, leading to the improvement of diet-related dysbiosis and metabolic derangements.


Assuntos
Spirulina , Masculino , Camundongos , Animais , Spirulina/química , Camundongos Obesos , Zinco , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças
15.
Microbiol Spectr ; 11(1): e0297022, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36537820

RESUMO

Reportedly, Western-type diets may induce the loss of key microbial taxa within the gastrointestinal microbiota, promoting the onset of noncommunicable diseases. It was hypothesized that the consumption of raw vegetables could contribute to the maintenance of the intestinal microbial community structure. In this context, we explored bacteria associated with commercial rocket salads produced through different farming practices: traditional (conventional, organic, and integrated) and vertical farming. Viable counts of mesophilic bacteria and lactic acid bacteria (LAB) were performed on plate count agar (PCA) and de Man-Rogosa-Sharpe (MRS) agar at pH 5.7, whereas metataxonomics through 16S rRNA gene sequencing was used to profile total bacteria associated with rocket salads. We found that rocket salads from vertical farming had much fewer viable bacteria and had a bacterial community structure markedly different from that of rocket salads from traditional farming. Furthermore, although α- and ß-diversity analyses did not differentiate rocket samples according to farming techniques, several bacterial taxa distinguished organic and integrated from conventional farming salads, suggesting that farming practices could affect the taxonomic composition of rocket bacterial communities. LAB were isolated from only traditional farming samples and belonged to different species, which were variably distributed among samples and could be partly associated with farming practices. Finally, the INFOGEST protocol for in vitro simulation of gastrointestinal digestion revealed that several taxonomically different rocket-associated bacteria (particularly LAB) could survive gastrointestinal transit. This study suggests that commercial ready-to-eat rocket salads harbor live bacteria that possess the ability to survive gastrointestinal transit, potentially contributing to the taxonomic structure of the human gut microbiota. IMPORTANCE Western-type diets are composed of foods with a reduced amount of naturally occurring microorganisms. It was hypothesized that a microbe-depleted diet can favor the alteration of the human intestinal microbial ecosystem, therefore contributing to the onset of chronic metabolic and immune diseases currently recognized as the most significant causes of death in the developed world. Here, we studied the microorganisms that are associated with commercial ready-to-eat rocket salads produced through different farming practices. We showed that rocket salad (a widely consumed vegetal food frequently eaten raw) may be a source of lactic acid bacteria and other microbes that can survive gastrointestinal transit, potentially increasing the biodiversity of the intestinal microbiota. This deduction may be valid for virtually all vegetal foods that are consumed raw.


Assuntos
Microbiota , Saladas , Humanos , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Saladas/microbiologia , Ágar , RNA Ribossômico 16S/genética , Verduras/microbiologia , Bactérias
16.
Food Res Int ; 164: 112322, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737914

RESUMO

Fermented foods are receiving growing attention for their health promoting properties. In particular, there is a growing demand for plant-based fermented foods as dairy alternatives. Considering that soy is a vegetal food rich in nutrients and a source of the phytoestrogen isoflavones, the aim of this study was to select safe food microorganisms with the ability to ferment a soy drink resulting in a final product with an increased estrogenic activity and improved functional properties. We used milk kefir grains, a dairy source of microorganisms with proven health-promoting properties, as a starting inoculum for a soymilk. After 14 passages of daily inoculum in fresh soy drink, we isolated four lactic acid bacterial strains: Lactotoccus lactis subsp. lactis K03, Leuconostc pseudomesenteroides K05, Leuconostc mesenteroides K09 and Lentilactobacillus kefiri K10. Isolated strains were proven to be safe for human consumption according to the assessment of their antibiotic resistance profile and comparative genomics. Furthermore, functional characterization of the bacterial strains demonstrated their ability to ferment sugars naturally present in soybeans and produce a creamy texture. In addition, we demonstrated, by means of a yeast-based bioluminescence reporter system, that the two strains belonging to the genus Leuconostoc increased the estrogenic activity of the soybean drink. In conclusion, the proposed application of the bacterial strains characterized in this study meets the growing demand of consumers for health-promoting vegetal food alternatives to dairy products.


Assuntos
Kefir , Lactobacillales , Leite de Soja , Humanos , Kefir/microbiologia , Lactobacillales/genética , Bactérias , Suplementos Nutricionais , Glycine max
17.
Gut Microbes ; 15(2): 2274128, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37910479

RESUMO

The gut microbiota is believed to be a critical factor in the pathogenesis of IBS, and its metabolic byproducts, such as short-chain fatty acids (SCFAs), are known to influence gut function and host health. Despite this, the precise role of SCFAs in IBS remains a topic of debate. In this study, we examined the bacterial community structure by 16S rRNA gene profiling and SCFA levels by UPLC-MS/MS in fecal samples from healthy controls (HC; n = 100) and non-constipated patients (IBS-D and IBS-M; NC-IBS; n = 240) enrolled in 19 hospitals in Italy. Our findings suggest a significant difference between the fecal microbiomes of NC-IBS patients and HC subjects, with HC exhibiting higher intra-sample biodiversity. Furthermore, we were able to classify non-constipated patients into two distinct subgroups based on their fecal SCFA levels (fecal catabotype "high" and "low"), each characterized by unique taxonomic bacterial signatures. Our results suggest that the fecal catabotype with higher SCFA levels may represent a distinct clinical phenotype of IBS that could have implications for its diagnosis and treatment. This study provides a new perspective on the intricate relationship between the gut microbiome and bowel symptoms in IBS, underscoring the importance of personalized strategies for its management.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Humanos , Síndrome do Intestino Irritável/microbiologia , Diarreia/microbiologia , RNA Ribossômico 16S/genética , Cromatografia Líquida , Microbioma Gastrointestinal/genética , Espectrometria de Massas em Tandem , Ácidos Graxos Voláteis/análise , Fezes/microbiologia
18.
mSystems ; 8(4): e0043123, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37462361

RESUMO

The interplay between the intestinal microbiota and host is critical to intestinal ontogeny and homeostasis. MicroRNAs (miRNAs) may be an underlying link. Intestinal miRNAs are microbiota-dependent and, when shed in the lumen, affect resident microorganisms. Yet, longitudinal relationships between intestinal tissue miRNAs, luminal miRNAs, and luminal microorganisms have not been elucidated, especially in early life. Here, we investigated the postnatal cecal miRNA and microbiota populations, their relationship, and their impact on intestinal maturation in specific pathogen-free mice; we also assessed if they can be modified by intervention with allochthonous probiotic lactobacilli. We report that cecal and cecal content miRNA and microbiota signatures are temporally regulated, correlated, and modifiable by probiotics with implications for intestinal maturation. These findings help understand causal relationships within the gut ecosystem and provide a basis for preventing and managing their alterations in diseases throughout life. IMPORTANCE The gut microbiota affects intestinal microRNA (miRNA) signatures and is modified by host-derived luminal miRNA. This suggests the existence of close miRNA-microbiota relationships that are critical to intestinal homeostasis. However, an integrative analysis of these relationships and their evolution during intestinal postnatal maturation is lacking. We provide a system-level longitudinal analysis of miRNA-microbiota networks in the intestine of mice at the weaning transition, including tissue and luminal miRNA and luminal microbiota. To address causality and move toward translational applications, we used allochthonous probiotic lactobacilli to modify these longitudinal relationships and showed that they are critical for intestinal maturation in early life. These findings contribute to understand mechanisms that underlie the maturation of the intestinal ecosystem and suggest that interventions aiming at maintaining, or restoring, homeostasis cannot prescind from considering relationships among its components.


Assuntos
Microbioma Gastrointestinal , MicroRNAs , Microbiota , Camundongos , Animais , MicroRNAs/genética , Lactobacillus/genética , Microbioma Gastrointestinal/genética , Crescimento e Desenvolvimento
19.
Cancer Lett ; 555: 216041, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36565918

RESUMO

The mammary gland hosts a microbiota, which differs between malignant versus normal tissue. We found that aerosolized antibiotics decrease murine mammary tumor growth and strongly limit lung metastasis. Oral absorbable antibiotics also reduced mammary tumors. In ampicillin-treated nodules, the immune microenvironment consisted of an M1 profile and improved T cell/macrophage infiltration. In these tumors, we noted an under-representation of microbial recognition and complement pathways, supported by TLR2/TLR7 protein and C3-fragment deposition reduction. By 16S rRNA gene profiling, we observed increased Staphylococcus levels in untreated tumors, among which we isolated Staphylococcus epidermidis, which had potent inflammatory activity and increased Tregs. Conversely, oral ampicillin lowered Staphylococcus epidermidis in mammary tumors and expanded bacteria promoting an M1 phenotype and reducing MDSCs and tumor growth. Ampicillin/paclitaxel combination improved the chemotherapeutic efficacy. Notably, an Amp-like signature, based on genes differentially expressed in murine tumors, identified breast cancer patients with better prognosis and high immune infiltration that correlated with a bacteria response signature. This study highlights the significant influence of mammary tumor microbiota on local immune status and the relevance of its treatment with antibiotics, in combination with breast cancer therapies.


Assuntos
Neoplasias Mamárias Animais , Staphylococcus epidermidis , Camundongos , Animais , RNA Ribossômico 16S/genética , Ampicilina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Microambiente Tumoral
20.
Sci Rep ; 12(1): 19426, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371559

RESUMO

Akkermansia muciniphila, a commensal bacterium commonly found in healthy gut microbiota, is widely considered a next-generation beneficial bacterium candidate to improve metabolic and inflammatory disorders. Recently the EFSA's Panel on Nutrition, Novel food, and Food Allergens has declared that pasteurized A. muciniphila DSM 22959T (also MucT, ATCC BAA-835) can be considered safe as a novel food, opening the door to its commercialization as a food supplement. Despite its recognized health benefits, there is still little information regarding the antimicrobial susceptibility of this species and reference cut-off values to distinguish strains with intrinsic or acquired resistance from susceptible strains. In this study, we combined a genomic approach with the evaluation of the antibiotic susceptibility in five human A. muciniphila isolates. Genomic mining for antimicrobial resistance genes and MICs determinations revealed that only one strain harboring tetW gene showed resistance to tetracycline, whereas all A. muciniphila strains showed low sensitivity to ciprofloxacin and aminoglycosides with no genotypic correlation. Although all strains harbor the gene adeF, encoding for a subunit of the resistance-nodulation-cell division efflux pump system, potentially involved in ciprofloxacin resistance, the susceptibility towards ciprofloxacin determined in presence of efflux pump inhibitors was not affected. Overall, our outcomes revealed the importance to extend the antibiotic susceptibility test to a larger number of new isolates of A. muciniphila to better assess the safety aspects of this species.


Assuntos
Akkermansia , Verrucomicrobia , Humanos , Antibacterianos/farmacologia , Ciprofloxacina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA