Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(9): E535-43, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22334650

RESUMO

Understanding the causes and consequences of wildfires in forests of the western United States requires integrated information about fire, climate changes, and human activity on multiple temporal scales. We use sedimentary charcoal accumulation rates to construct long-term variations in fire during the past 3,000 y in the American West and compare this record to independent fire-history data from historical records and fire scars. There has been a slight decline in burning over the past 3,000 y, with the lowest levels attained during the 20th century and during the Little Ice Age (LIA, ca. 1400-1700 CE [Common Era]). Prominent peaks in forest fires occurred during the Medieval Climate Anomaly (ca. 950-1250 CE) and during the 1800s. Analysis of climate reconstructions beginning from 500 CE and population data show that temperature and drought predict changes in biomass burning up to the late 1800s CE. Since the late 1800s , human activities and the ecological effects of recent high fire activity caused a large, abrupt decline in burning similar to the LIA fire decline. Consequently, there is now a forest "fire deficit" in the western United States attributable to the combined effects of human activities, ecological, and climate changes. Large fires in the late 20th and 21st century fires have begun to address the fire deficit, but it is continuing to grow.


Assuntos
Incêndios/história , Biomassa , Carvão Vegetal/análise , Mudança Climática/história , Secas , Sedimentos Geológicos/análise , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Antiga , História Medieval , Atividades Humanas/história , Atividades Humanas/tendências , Humanos , Sudoeste dos Estados Unidos , Temperatura , Árvores/crescimento & desenvolvimento
2.
New Phytol ; 204(1): 37-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25039238

RESUMO

Climate refugia, locations where taxa survive periods of regionally adverse climate, are thought to be critical for maintaining biodiversity through the glacial-interglacial climate changes of the Quaternary. A critical research need is to better integrate and reconcile the three major lines of evidence used to infer the existence of past refugia - fossil records, species distribution models and phylogeographic surveys - in order to characterize the complex spatiotemporal trajectories of species and populations in and out of refugia. Here we review the complementary strengths, limitations and new advances for these three approaches. We provide case studies to illustrate their combined application, and point the way towards new opportunities for synthesizing these disparate lines of evidence. Case studies with European beech, Qinghai spruce and Douglas-fir illustrate how the combination of these three approaches successfully resolves complex species histories not attainable from any one approach. Promising new statistical techniques can capitalize on the strengths of each method and provide a robust quantitative reconstruction of species history. Studying past refugia can help identify contemporary refugia and clarify their conservation significance, in particular by elucidating the fine-scale processes and the particular geographic locations that buffer species against rapidly changing climate.


Assuntos
Fósseis , Modelos Teóricos , Filogeografia , Plantas , Clima , Fagus/fisiologia , Camada de Gelo , Picea/fisiologia , Pseudotsuga/fisiologia
3.
Proc Natl Acad Sci U S A ; 105(11): 4197-202, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18334647

RESUMO

Detecting latitudinal range shifts of forest trees in response to recent climate change is difficult because of slow demographic rates and limited dispersal but may be facilitated by spatially compressed climatic zones along elevation gradients in montane environments. We resurveyed forest plots established in 1964 along elevation transects in the Green Mountains (Vermont) to examine whether a shift had occurred in the location of the northern hardwood-boreal forest ecotone (NBE) from 1964 to 2004. We found a 19% increase in dominance of northern hardwoods from 70% in 1964 to 89% in 2004 in the lower half of the NBE. This shift was driven by a decrease (up to 76%) in boreal and increase (up to 16%) in northern hardwood basal area within the lower portions of the ecotone. We used aerial photographs and satellite imagery to estimate a 91- to 119-m upslope shift in the upper limits of the NBE from 1962 to 2005. The upward shift is consistent with regional climatic change during the same period; interpolating climate data to the NBE showed a 1.1 degrees C increase in annual temperature, which would predict a 208-m upslope movement of the ecotone, along with a 34% increase in precipitation. The rapid upward movement of the NBE indicates little inertia to climatically induced range shifts in montane forests; the upslope shift may have been accelerated by high turnover in canopy trees that provided opportunities for ingrowth of lower elevation species. Our results indicate that high-elevation forests may be jeopardized by climate change sooner than anticipated.


Assuntos
Ecossistema , Geografia , Efeito Estufa , Árvores/fisiologia , Modelos Biológicos , Fatores de Tempo , Vermont
4.
Nat Commun ; 12(1): 127, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397930

RESUMO

Amazonian Dark Earths (ADEs) are unusually fertile soils characterised by elevated concentrations of microscopic charcoal particles, which confer their distinctive colouration. Frequent occurrences of pre-Columbian artefacts at ADE sites led to their ubiquitous classification as Anthrosols (soils of anthropic origin). However, it remains unclear how indigenous peoples created areas of high fertility in one of the most nutrient-impoverished environments on Earth. Here, we report new data from a well-studied ADE site in the Brazilian Amazon, which compel us to reconsider its anthropic origin. The amounts of phosphorus and calcium-two of the least abundant macronutrients in the region-are orders of magnitude higher in ADE profiles than in the surrounding soil. The elevated levels of phosphorus and calcium, which are often interpreted as evidence of human activity at other sites, correlate spatially with trace elements that indicate exogenous mineral sources rather than in situ deposition. Stable isotope ratios of neodymium, strontium, and radiocarbon activity of microcharcoal particles also indicate exogenous inputs from alluvial deposition of carbon and mineral elements to ADE profiles,  beginning several thousands of years before the earliest evidence of soil management for plant cultivation in the region. Our data suggest that indigenous peoples harnessed natural processes of landscape formation, which led to the unique properties of ADEs, but were not responsible for their genesis. If corroborated elsewhere, this hypothesis would transform our understanding of human influence in Amazonia, opening new frontiers for the sustainable use of tropical landscapes going forward.

7.
Ecology ; 87(7): 1722-32, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16922322

RESUMO

Forest fire occurrence is affected by multiple controls that operate at local to regional scales. At the spatial scale of forest stands, regional climatic controls may be obscured by local controls (e.g., stochastic ignitions, topography, and fuel loads), but the long-term role of such local controls is poorly understood. We report here stand-scale (<100 ha) fire histories of the past 5000 years based on the analysis of sediment charcoal at two lakes 11 km apart in southeastern British Columbia. The two lakes are today located in similar subalpine forests, and they likely have experienced the same late-Holocene climatic changes because of their close proximity. We evaluated two independent properties of fire history: (1) fire-interval distribution, a measure of the overall incidence of fire, and (2) fire synchroneity, a measure of the co-occurrence of fire (here, assessed at centennial to millennial time scales due to the resolution of sediment records). Fire-interval distributions differed between the sites prior to, but not after, 2500 yr before present. When the entire 5000-yr period is considered, no statistical synchrony between fire-episode dates existed between the two sites at any temporal scale, but for the last 2500 yr marginal levels of synchrony occurred at centennial scales. Each individual fire record exhibited little coherency with regional climate changes. In contrast, variations in the composite record (average of both sites) matched variations in climate evidenced by late-Holocene glacial advances. This was probably due to the increased sample size and spatial extent represented by the composite record (up to 200 ha) plus increased regional climatic variability over the last several millennia, which may have partially overridden local, non-climatic controls. We conclude that (1) over past millennia, neighboring stands with similar modern conditions may have experienced different fire intervals and asynchronous patterns in fire episodes, likely because local controls outweighed the synchronizing effect of climate; (2) the influence of climate on fire occurrence is more strongly expressed when climatic variability is relatively great; and (3) multiple records from a region are essential if climate-fire relations are to be reliably described.


Assuntos
Clima , Ecossistema , Incêndios/história , Colúmbia Britânica , Sedimentos Geológicos , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História Antiga , História Medieval , Fatores de Tempo , Árvores/fisiologia
8.
R Soc Open Sci ; 3(10): 160608, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27853581

RESUMO

While wildland fire is globally most common at the savannah-grassland ecotone, there is little evidence of fire in coastal temperate rainforests. We reconstructed fire activity with a ca 700-year fire history derived from fire scars and stand establishment from 30 sites in a very wet (up to 4000 mm annual precipitation) temperate rainforest in coastal British Columbia, Canada. Drought and warmer temperatures in the year prior were positively associated with fire events though there was little coherence of climate indices on the years of fires. At the decadal scale, fires were more likely to occur after positive El Niño-Southern Oscillation and Pacific Decadal Oscillation phases and exhibited 30-year periods of synchrony with the negative phase of the Arctic Oscillation. Fire frequency was significantly inversely correlated with the distance from former Indigenous habitation sites and fires ceased following cultural disorganization caused by disease and other European impacts in the late nineteenth century. Indigenous people were likely to have been the primary ignition source in this and many coastal temperate rainforest settings. These data are directly relevant to contemporary forest management and discredit the myth of coastal temperate rainforests as pristine landscapes.

9.
Sci Adv ; 1(10): e1500715, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26702434

RESUMO

Understanding climatic influences on the rates and mechanisms of landscape erosion is an unresolved problem in Earth science that is important for quantifying soil formation rates, sediment and solute fluxes to oceans, and atmospheric CO2 regulation by silicate weathering. Glaciated landscapes record the erosional legacy of glacial intervals through moraine deposits and U-shaped valleys, whereas more widespread unglaciated hillslopes and rivers lack obvious climate signatures, hampering mechanistic theory for how climate sets fluxes and form. Today, periglacial processes in high-elevation settings promote vigorous bedrock-to-regolith conversion and regolith transport, but the extent to which frost processes shaped vast swaths of low- to moderate-elevation terrain during past climate regimes is not well established. By combining a mechanistic frost weathering model with a regional Last Glacial Maximum (LGM) climate reconstruction derived from a paleo-Earth System Model, paleovegetation data, and a paleoerosion archive, we propose that frost-driven sediment production was pervasive during the LGM in our unglaciated Pacific Northwest study site, coincident with a 2.5 times increase in erosion relative to modern rates. Our findings provide a novel framework to quantify how climate modulates sediment production over glacial-interglacial cycles in mid-latitude unglaciated terrain.

10.
PLoS One ; 9(12): e114282, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25526633

RESUMO

Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between these natural disturbances. Assessing inter-disturbance synergism is challenging due to the short length of historical records and the confounding influences of land use and climate changes on natural disturbance dynamics. We used dendrochronological methods to reconstruct defoliator outbreaks and fire occurrence at ten sites along a longitudinal transect running from central Oregon to western Montana. We assessed synergism between disturbance types, analyzed long-term changes in disturbance dynamics, and compared these disturbance histories with dendroclimatological moisture availability records to quantify the influence of moisture availability on disturbances. After approximately 1890, fires were largely absent and defoliator outbreaks became longer-lasting, more frequent, and more synchronous at our sites. Fires were more likely to occur during warm-dry years, while outbreaks were most likely to begin near the end of warm-dry periods. Our results show no discernible impact of defoliation events on subsequent fire risk. Any effect from the addition of fuels during defoliation events appears to be too small to detect given the overriding influence of climatic variability. We therefore propose that if there is any relationship between the two disturbances, it is a subtle synergistic relationship wherein climate determines the probability of occurrence of each disturbance type, and each disturbance type damps the severity, but does not alter the probability of occurrence, of the other disturbance type over long time scales. Although both disturbance types may increase in frequency or extent in response to future warming, our records show no precedent that western spruce budworm outbreaks will increase future fire risk.


Assuntos
Biomassa , Incêndios/estatística & dados numéricos , Insetos/fisiologia , Picea/fisiologia , Animais , Insetos/patogenicidade , Montana , Oregon , Picea/parasitologia
11.
Front Biogeogr ; 5(2)2013.
Artigo em Inglês | MEDLINE | ID: mdl-24707348

RESUMO

The opportunity to reflect broadly on the accomplishments, prospects, and reach of a field may present itself relatively infrequently. Each biennial meeting of the International Biogeography Society showcases ideas solicited and developed largely during the preceding year, by individuals or teams from across the breadth of the discipline. Here, we highlight challenges, developments, and opportunities in biogeography from that biennial synthesis. We note the realized and potential impact of rapid data accumulation in several fields, a renaissance for inter-disciplinary research, the importance of recognizing the evolution-ecology continuum across spatial and temporal scales and at different taxonomic, phylogenetic and functional levels, and re-exploration of classical assumptions and hypotheses using new tools. However, advances are taxonomically and geographically biased, and key theoretical frameworks await tools to handle, or strategies to simplify, the biological complexity seen in empirical systems. Current threats to biodiversity require unprecedented integration of knowledge and development of predictive capacity that may enable biogeography to unite its descriptive and hypothetico-deductive branches and establish a greater role within and outside academia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA