RESUMO
Microdevices that offer hyperglycemia monitoring and controllable drug delivery are urgently needed for daily diabetes management. Herein, a theranostic separable double-layer microneedle (DLMN) patch consisting of a swellable GelMA supporting base layer for glycemia sensing and a phase-change material (PCM) arrowhead layer for hyperglycemia regulation has been fabricated. The Cu-TCPP(Fe)/glucose oxidase composite and 3,3',5,5'-tetramethylbenzidine coembedded in the supporting base layer permit a visible color shift at the base surface in the presence of glucose via a cascade reaction, allowing for the in situ detection of glucose in interstitial fluid. The PCM arrowhead layer is encapsulated with water monodispersity melanin nanoparticles from Sepia officinalis and metformin that is imparted with a near-infrared ray photothermal response feature, which is beneficial to the controllable release of metformin for suppression of hyperglycemia. By applying the DLMN patch to the streptozotocin-induced type 2 diabetic Sprague-Dawley rat model, the results demonstrated that it can effectively extract dermal interstitial fluid, read out glucose levels, and regulate hyperglycemia. This DLMN-integrated portable colorimetric sensor and self-regulated glucose level hold great promise for daily diabetes management.
RESUMO
In recent years, microneedles (MNs) have attracted a lot of attention due to their microscale sizes and high surface area (500-1000 µm in length), allowing pain-free and efficient drug delivery through the skin. In addition to the great success of MNs based transdermal drug delivery, especially for skin diseases, increasing studies have indicated the expansion of MNs to diverse nontransdermal applications, including the delivery of therapeutics for hair loss, ocular diseases, and oral mucosal. Here, the current treatment of hair loss, eye diseases, and oral disease is discussed and an overview of recent advances in the application of MNs is provided for these three noncutaneous localized organ diseases. Particular emphasis is laid on the future trend of MNs technology development and future challenges of expanding the generalizability of MNs.
Assuntos
Agulhas , Pele , Humanos , Administração Cutânea , Alopecia , Sistemas de Liberação de MedicamentosRESUMO
Skin interstitial fluid (ISF) is a biofluid with information-rich biomarkers for disease diagnosis and prognosis. Microneedle (MN) integration of sampling and instant biomarker readout hold great potential in health status monitoring and point-of-care testing (POCT). The present work describes an attractive MN sensor array for minimally invasive monitoring of ISF microRNA (miRNA) and Cu2+. The MN array is made of methacrylated gelatin (GelMA) and methacrylated hyaluronic acid (MeHA), and a further divisionally encapsulated miRNA and Cu2+ detection system, and is cross-linked through blue-light irradiation. The MN patch displays good mechanical properties that enable withstanding more than 0.4 N per needle, and exhibits a high swelling ratio of 700% that facilitates timely extraction of sufficient ISF for biomarker analysis. For proof-of-concept, it realizes detection of miRNAs and Cu2+ efficiently and quantitatively in an agarose skin and fresh porcine cadaver skin model. Given the good sampling and in situ monitoring ability, the MN array holds great promise for skin ISF-based applications.
Assuntos
Líquido Extracelular , Agulhas , Animais , Biomarcadores , Gelatina , Pele , SuínosRESUMO
DNAzyme shows great promise in designing a highly sensitive and specific sensing platform; however, the low cellular uptake efficiency, instability, and especially the insufficient cofactor supply inhibit the intracellular molecule sensor applications. Herein, we demonstrate a novel type of DNAzyme-based self-driven intracellular sensor for microRNA (miRNA) detection in living cells. The sensor consists of a metal-organic framework [zeolite imidazole framework (ZIF-8)] core loaded with a shell consisting of a rationally designed DNAzyme, where the substrate strand is modified with FAM and BHQ-1 nearby both the sides of the restriction site, respectively, while the enzyme strand consists of two separate strands with a complementary fragment to the substrate strand and the targeting miRNA, respectively. The ZIF-8 nanoparticles enable the efficient delivery of DNAzyme into the cell and protect the DNAzyme from degradation. The pH-responsive ZIF-8 degradation is accompanied with the release of the DNAzyme and Zn2+ cofactors, and the intracellular target miRNAs recognize and activate the DNAzyme driven by the Zn2+ cofactors to cleave the substrate strand, resulting in the release of the FAM-labeled shorter product strand and increased fluorescence for miRNA detection. The self-driven approach can be generally applied to various miRNAs' detection through DNAzyme engineering.
Assuntos
Técnicas Biossensoriais , DNA Catalítico , Estruturas Metalorgânicas , MicroRNAs , Zeolitas , DNA Catalítico/química , Imidazóis , MicroRNAs/genéticaRESUMO
Skin interstitial fluid (ISF) containing a great variety of molecular biomarkers derived from cells and subcutaneous blood capillaries has recently emerged as a clinically potential component for early diagnosis of a wide range of diseases; however, the minimally invasive sampling and detection of cell-free biomarkers in ISF is still a key challenge. Herein, we developed microneedles (MNs) that consist of gelatin methacryloyl (GelMA) and graphene oxide (GO) for the enrichment and sensitive detection of multiple microRNA (miRNA) biomarkers from skin ISF. The GO-GelMA MNs exhibited robust mechanical properties, fast sampling kinetics, and large swelling capacity, which enabled collecting ISF volume high to 21.34 µL in 30 min, facilitating effective miRNA analysis. It preliminarily realized the sensitive detection of three types of psoriasis-related miRNAs biomarkers either on the patch itself or in solution after release from the hydrogel by combining catalytic hairpin assembly signal amplification reaction. The automated and minimally invasive ISF miRNA detection technology of GO-GelMA MNs has great potential to monitor cell-free clinically informative biomarkers for personalized diagnosis and prognosis.