RESUMO
We describe an integrated Brewster angle microscope (BAM), Langmuir trough, and grazing incidence x-ray diffraction assembly. The integration of these three techniques allows for the direct observation of radiative beam damage to a lipid monolayer at the air-water interface. Although beam damage has been seen in x-ray measurements, it has not been directly observed in situ at the micron scale. Using this integrated assembly, we examined the effects of radiative beam damage on Langmuir monolayers of 1,2-dimyristoyl-sn-glycero-3-[phospho-L-serine] (DMPS), 1:1 DMPS:1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1:1 DMPS:1,2-dioleoyl-sn-glycero-3-phosphocholine held at a constant surface pressure. For constant surface pressure experiments, we observed a marked decrease in the surface area of the film upon exposure to the beam due to photodissociation. For a condensed lipid film, a change in refractive index of the film was observed post-beam-exposure, indicating areas of damage. For DMPS in an oxygenated environment, the Bragg peak intensity decreased with beam exposure. In mixed monolayer systems, with saturated and unsaturated lipids, an increase in the number of small saturated lipid domains was seen as the unsaturated lipid was preferentially damaged and lost from the monolayer. We show that BAM is a highly effective technique for in situ observation of the effects of radiative damage at the air/water interface during a synchrotron experiment.
Assuntos
Bicamadas Lipídicas/química , Bicamadas Lipídicas/efeitos da radiação , Teste de Materiais/instrumentação , Microscopia de Polarização/instrumentação , Manejo de Espécimes/instrumentação , Difração de Raios X/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais/métodos , Membranas Artificiais , Microscopia de Polarização/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Integração de Sistemas , Difração de Raios X/métodos , Raios XRESUMO
We demonstrate the use of X-ray reflectivity to probe the electron density profile normal to the interface between two polar liquids. Measurements of the interfacial width at the neat nitrobenzene/water and the neat water/2-heptanone interfaces are presented. These widths are consistent with predictions from capillary wave theory that describe thermal interfacial fluctuations determined by the tension and bending rigidity of the interface. Variation of the temperature of the water/nitrobenzene interface from 25 degrees C to 55 degrees C indicates that the role of the bending rigidity decreases with increasing temperature. X-ray reflectivity measurements of the electrified interface between an aqueous solution of BaCl2 and a nitrobenzene solution of TBATPB demonstrate the sensitivity of these measurements to the electrolyte distribution at the interface. A preliminary analysis of these data illustrates the inadequacy of the simplest, classical Gouy-Chapman theory of the electrolyte distribution.