Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Microvasc Res ; 115: 68-74, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28888910

RESUMO

Innate immunity is characterized by the coordinated activity of multiple leukocytes mobilizing at or near the site of tissue injury. Slow rolling and/or adherent leukocytes have been shown to hydrodynamically recruit free-stream leukocytes to a model of inflamed tissue. In this paper, we numerically investigate the hydrodynamic recruitment of free-stream leukocytes due to the presence of a nearby adherent, deformed leukocyte by using a computational model developed from first principles to simulate these types of interactions. For free-stream cells at least one diameter above the surface and subsequently involved in a glancing (out-of-plane) collision with one or more adherent cell, the simulation indicated that the free-stream cell was driven closer to the surface as a function of increasing glancing distance. Further, with increasing deformation of the adherent cell a similar effect was observed beginning at smaller glancing offsets. The influence of binary interactions on the trajectories of free-stream cells that were less than one diameter above the surface was also examined. For fixed glancing distance, increased adherent cell deformation led to enhanced recruiting effectiveness which was quantified by determining the time needed for the free-stream cell to enter the reactive zone; that is, a membrane separation distance such that receptor-ligand binding was possible. This effectiveness was only moderately influenced by variations in shear rate and cell buoyancy. Finally, for large glancing offset the domain of influence of the adherent cell diminished and the trajectory of the free-stream cell was unaffected by the adherent cell, with regard to hydrodynamic recruitment.


Assuntos
Adesão Celular , Forma Celular , Quimiotaxia de Leucócito , Leucócitos/fisiologia , Simulação por Computador , Humanos , Hidrodinâmica , Imunidade Inata , Migração e Rolagem de Leucócitos , Leucócitos/imunologia , Modelos Biológicos , Análise Numérica Assistida por Computador , Estresse Mecânico
2.
J Mech Behav Biomed Mater ; 62: 534-544, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27294284

RESUMO

Particle suspensions are common to biological fluid flows; for example, flow of red- and white-blood cells, and platelets. In medical technology, current and proposed methods for drug delivery use membrane-bounded liquid capsules for transport via the microcirculation. In this paper, we consider a 3D linear elastic particle inserted into a Newtonian fluid and investigate the time-dependent deformation using a numerical simulation. Specifically, a boundary element technique is used to investigate the motion and deformation of initially spherical or spheroidal particles in bounded linear shear flow. The resulting deformed shapes reveal a steady-state profile that exhibits a 'tank-treading' motion for initially spherical particles. Wall effects on particle trajectory are seen to include a modified Jeffrey׳s orbit for spheroidal inclusions with a period that varies inversely with the strength of the shear flow. Alternately, spheroidal inclusions may exhibit either a 'tumbling' or 'trembling' motion depending on the initial particle aspect ratio and the capillary number (i.e., ratio of fluid shear to elastic restoring force). We find for a capillary number of 0.1, a tumbling mode transitions to a trembling mode at an aspect ratio of 0.87 (approx.), while for a capillary number of 0.2, this transition takes place at a lower aspect ratio. These oscillatory modes are consistent with experimental observations involving similarly shaped vesicles and thus serves to validate the use of a simple elastic constitutive model to perform relevant physiological flow calculations.


Assuntos
Elasticidade , Eritrócitos/fisiologia , Leucócitos/fisiologia , Resistência ao Cisalhamento , Suspensões , Movimento (Física) , Viscosidade
3.
J Biomech ; 46(6): 1067-74, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23481422

RESUMO

Leukocyte trafficking in the microvasculature during inflammatory response is known to involve multiple adhesion molecules and is referred to as the leukocyte adhesion cascade (LAC). Surface-bound selectins and their respective ligands are primarily responsible for tethering and rolling of leukocytes over inflamed endothelium. Numerical modeling of this response is challenging due to the nature of cell-cell interactions in Stokes flow (i.e., large domain of influence for each cell over its neighbors). Here, we discuss a novel simulation capable of modeling several steps of the LAC. The new model includes relevant contact and lubrication forces and extends a physics-based model for single particle rolling interactions developed by Hammer and Apte (1992), for multiparticle interactions by King and Hammer (2001a), and for deformable particles by Gee and King (2006). We initially demonstrate the model for cell-cell collisions occurring near a planar substrate, and for cell-substrate adhesive interactions. The adhesion studies provide a new perspective of the contribution of Hertzian contact mechanics toward variations in contact area at the cell-substrate interface. The results confirm that interfacial contact area will increase as a result of the contact formulation and that this mechanism may enhance cell rolling interactions for cells driven toward endothelium by cell-cell collisions. As a result of cell compliance, rolling velocity may decrease significantly, compared to non-compliant cells.


Assuntos
Leucócitos/fisiologia , Modelos Biológicos , Adesão Celular , Simulação por Computador , Migração e Rolagem de Leucócitos
4.
Biosci Rep ; 32(4): 375-82, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22494057

RESUMO

Human leukaemic HL-60 cells are widely used for studying interactions involving adhesion molecules [e.g. P-selectin and PSGL-1 (P-selectin glycoprotein ligand-1)] since their rolling behaviour has been shown to mimic the dynamics of leucocyte rolling in vitro. HL-60 cells are neutrophilic promyelocytes that can undergo granulocytic differentiation upon exposure to compounds such as DMSO (dimethylsulfoxide). Using a parallel plate flow chamber functionalized with recombinant P-selectin-Fc chimaera, undifferentiated and DMSO-induced (48, 72 and 96 h) HL-60 cells were assayed for rolling behaviour. We found that depending on P-selectin incubation concentration, undifferentiated cells incurred up to a 6-fold increase in rolling velocity while subjected to an approximately 10-fold increase in biologically relevant shear stress. HL-60 cells exposed to DMSO for up to 72 h incurred up to a 3-fold increase in rolling velocity over the same shear stress range. Significantly, cells exposed for up to 96 h incurred up to a 9-fold decrease in rolling velocity, compared with undifferentiated HL-60 cells. Although cell surface and nuclear morphological changes were evident upon exposure to DMSO, flow cytometric analysis revealed that PSGL-1 expression was unchanged, irrespective of treatment duration. The results suggest that DMSO-treated HL-60 cells may be problematic as a substitute for neutrophils for trafficking studies during advanced stages of the LAC (leucocyte adhesion cascade). We suggest that remodelling of the cell surface during differentiation may affect rolling behaviour and that DMSO-treated HL-60 cells would behave differently from the normal leucocytes during inflammatory response in vivo.


Assuntos
Dimetil Sulfóxido/farmacologia , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Adesão Celular , Núcleo Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Células HL-60 , Humanos , Proteínas Imobilizadas/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Selectina-P/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA