Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 39(3): 526-538, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214203

RESUMO

BACKGROUND: Pathogenic variants in several genes have been linked to genetic forms of isolated or combined dystonia. The phenotypic and genetic spectrum and the frequency of pathogenic variants in these genes have not yet been fully elucidated, neither in patients with dystonia nor with other, sometimes co-occurring movement disorders such as Parkinson's disease (PD). OBJECTIVES: To screen >2000 patients with dystonia or PD for rare variants in known dystonia-causing genes. METHODS: We screened 1207 dystonia patients from Germany (DysTract consortium), Spain, and South Korea, and 1036 PD patients from Germany for pathogenic variants using a next-generation sequencing gene panel. The impact on DNA methylation of KMT2B variants was evaluated by analyzing the gene's characteristic episignature. RESULTS: We identified 171 carriers (109 with dystonia [9.0%]; 62 with PD [6.0%]) of 131 rare variants (minor allele frequency <0.005). A total of 52 patients (48 dystonia [4.0%]; four PD [0.4%, all with GCH1 variants]) carried 33 different (likely) pathogenic variants, of which 17 were not previously reported. Pathogenic biallelic variants in PRKRA were not found. Episignature analysis of 48 KMT2B variants revealed that only two of these should be considered (likely) pathogenic. CONCLUSION: This study confirms pathogenic variants in GCH1, GNAL, KMT2B, SGCE, THAP1, and TOR1A as relevant causes in dystonia and expands the mutational spectrum. Of note, likely pathogenic variants only in GCH1 were also found among PD patients. For DYT-KMT2B, the recently described episignature served as a reliable readout to determine the functional effect of newly identified variants. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , Doença de Parkinson , Humanos , Distonia/genética , Distúrbios Distônicos/genética , Mutação/genética , Frequência do Gene , Doença de Parkinson/genética , Chaperonas Moleculares/genética , Proteínas de Ligação a DNA/genética , Proteínas Reguladoras de Apoptose/genética
2.
Blood ; 137(10): 1392-1405, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932519

RESUMO

Polyphosphate is a procoagulant inorganic polymer of linear-linked orthophosphate residues. Multiple investigations have established the importance of platelet polyphosphate in blood coagulation; however, the mechanistic details of polyphosphate homeostasis in mammalian species remain largely undefined. In this study, xenotropic and polytropic retrovirus receptor 1 (XPR1) regulated polyphosphate in platelets and was implicated in thrombosis in vivo. We used bioinformatic analyses of omics data to identify XPR1 as a major phosphate transporter in platelets. XPR1 messenger RNA and protein expression inversely correlated with intracellular polyphosphate content and release. Pharmacological interference with XPR1 activity increased polyphosphate stores, led to enhanced platelet-driven coagulation, and amplified thrombus formation under flow via the polyphosphate/factor XII pathway. Conditional gene deletion of Xpr1 in platelets resulted in polyphosphate accumulation, accelerated arterial thrombosis, and augmented activated platelet-driven pulmonary embolism without increasing bleeding in mice. These data identify platelet XPR1 as an integral regulator of platelet polyphosphate metabolism and reveal a fundamental role for phosphate homeostasis in thrombosis.


Assuntos
Plaquetas/metabolismo , Polifosfatos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virais/metabolismo , Trombose/metabolismo , Animais , Transporte Biológico , Coagulação Sanguínea , Fator XII/metabolismo , Feminino , Masculino , Camundongos , Trombose/sangue , Receptor do Retrovírus Politrópico e Xenotrópico
3.
Mov Disord ; 38(11): 2084-2093, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37641392

RESUMO

BACKGROUND: In recent years, cervical dystonia (CD) has been recognized as a network disorder that involves not only the basal ganglia but other brain regions, such as the primary motor and somatosensory cortex, brainstem, and cerebellum. So far, the role of the cerebellum in the pathophysiology of dystonia is only poorly understood. OBJECTIVE: The objective of this study was to investigate the role of the cerebellum on sensorimotor associative plasticity in patients with CD. METHODS: Sixteen patients with CD and 13 healthy subjects received cerebellar transcranial direct current stimulation (ctDCS) followed by a paired associative stimulation (PAS) protocol based on transcranial magnetic stimulation that induces sensorimotor associative plasticity. Across three sessions the participants received excitatory anodal, inhibitory cathodal, and sham ctDCS in a double-blind crossover design. Before and after the intervention, motor cortical excitability and motor symptom severity were assessed. RESULTS: PAS induced an increase in motor cortical excitability in both healthy control subjects and patients with CD. In healthy subjects this effect was attenuated by both anodal and cathodal ctDCS with a stronger effect of cathodal stimulation. In patients with CD, anodal stimulation suppressed the PAS effect, whereas cathodal stimulation had no influence on PAS. Motor symptom severity was unchanged after the intervention. CONCLUSIONS: Cerebellar modulation with cathodal ctDCS had no effect on sensorimotor associative plasticity in patients with CD, in contrast with the net inhibitory effect in healthy subjects. This is further evidence that the cerebello-thalamo-cortical network plays a role in the pathophysiology of dystonia. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos , Transtornos dos Movimentos , Torcicolo , Estimulação Transcraniana por Corrente Contínua , Humanos , Torcicolo/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Cerebelo , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Plasticidade Neuronal/fisiologia
4.
J Hepatol ; 77(6): 1532-1544, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35798133

RESUMO

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) is a progressive cholangiopathy characterised by fibrotic stricturing and inflammation of bile ducts, which seems to be driven by a maladaptive immune response to bile duct injury. The histological finding of dendritic cell expansion in portal fields of patients with PSC prompted us to investigate the role of dendritic cells in orchestrating the immune response to bile duct injury. METHODS: Dendritic cell numbers and subtypes were determined in different mouse models of cholangitis by flow cytometry based on lineage-imprinted markers. Findings were confirmed by immunofluorescence microscopy of murine livers, and liver samples from patients with PSC were compared to control samples from bariatric surgery patients. Using genetic tools, selected dendritic cell subsets were depleted in murine cholangitis. The dendritic cell response to bile duct injury was determined by single-cell transcriptomics. RESULTS: Cholangitis mouse models were characterised by selective intrahepatic expansion of type 2 conventional dendritic cells, whereas plasmacytoid and type 1 conventional dendritic cells were not expanded. Expansion of type 2 conventional dendritic cells in human PSC lesions was confirmed by histology. Depletion studies revealed a proinflammatory role of type 2 conventional dendritic cells. Single-cell transcriptomics confirmed inflammatory maturation of the intrahepatic type 2 conventional dendritic cells and identified dendritic cell-derived inflammatory mediators. CONCLUSIONS: Cholangitis is characterised by intrahepatic expansion and inflammatory maturation of type 2 conventional dendritic cells in response to biliary injury. Therefore, type 2 conventional dendritic cells and their inflammatory mediators might be potential therapeutic targets for the treatment of PSC. LAY SUMMARY: Primary sclerosing cholangitis (PSC) is an inflammatory liver disease of the bile ducts for which there is no effective treatment. Herein, we show that the inflammatory immune response to bile duct injury is organised by a specific subtype of immune cell called conventional type 2 dendritic cells. Our findings suggest that this cell subtype and the inflammatory molecules it produces are potential therapeutic targets for PSC.


Assuntos
Sistema Biliar , Colangite Esclerosante , Colangite , Humanos , Camundongos , Animais , Colangite/metabolismo , Sistema Biliar/patologia , Modelos Animais de Doenças , Células Dendríticas/metabolismo , Mediadores da Inflamação/metabolismo
5.
J Neuroinflammation ; 19(1): 256, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224611

RESUMO

BACKGROUND: Previous studies have demonstrated that purinergic receptors could be therapeutic targets to modulate the inflammatory response in multiple models of brain diseases. However, tools for the selective and efficient targeting of these receptors are lacking. The development of new P2X7-specific nanobodies (nbs) has enabled us to effectively block the P2X7 channel. METHODS: Temporary middle cerebral artery occlusion (tMCAO) in wild-type (wt) and P2X7 transgenic (tg) mice was used to model ischemic stroke. Adenosine triphosphate (ATP) release was assessed in transgenic ATP sensor mice. Stroke size was measured after P2X7-specific nbs were injected intravenously (iv) and intracerebroventricularly (icv) directly before tMCAO surgery. In vitro cultured microglia were used to investigate calcium influx, pore formation via 4,6-diamidino-2-phenylindole (DAPI) uptake, caspase 1 activation and interleukin (IL)-1ß release after incubation with the P2X7-specific nbs. RESULTS: Transgenic ATP sensor mice showed an increase in ATP release in the ischemic hemisphere compared to the contralateral hemisphere or the sham-treated mice up to 24 h after stroke. P2X7-overexpressing mice had a significantly greater stroke size 24 h after tMCAO surgery. In vitro experiments with primary microglial cells demonstrated that P2X7-specific nbs could inhibit ATP-triggered calcium influx and the formation of membrane pores, as measured by Fluo4 fluorescence or DAPI uptake. In microglia, we found lower caspase 1 activity and subsequently lower IL-1ß release after P2X7-specific nb treatment. The intravenous injection of P2X7-specific nbs compared to isotype controls before tMCAO surgery did not result in a smaller stroke size. As demonstrated by fluorescence-activated cell sorting (FACS), after stroke, iv injected nbs bound to brain-infiltrated macrophages but not to brain resident microglia, indicating insufficient crossing of the blood-brain barrier of the nbs. Therefore, we directly icv injected the P2X7-specific nbs or the isotype nbs. After icv injection of 30 µg of P2X7 specific nbs, P2X7 specific nbs bound sufficiently to microglia and reduced stroke size. CONCLUSION: Mechanistically, we can show that there is a substantial increase of ATP locally after stroke and that blockage of the ATP receptor P2X7 by icv injected P2X7-specific nbs can reduce ischemic tissue damage.


Assuntos
Receptores Purinérgicos P2 , Anticorpos de Domínio Único , Acidente Vascular Cerebral , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Caspase 1/metabolismo , Infarto da Artéria Cerebral Média/patologia , Interleucina-1beta/metabolismo , Camundongos , Microglia/metabolismo , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Anticorpos de Domínio Único/metabolismo , Acidente Vascular Cerebral/metabolismo
6.
BMC Neurol ; 22(1): 18, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012472

RESUMO

BACKGROUND: We report the case of a patient with recurrent episodes of disturbed memory suggestive of transient epileptic amnesia, and a focal hippocampal lesion typically associated with transient global amnesia. We argue how careful consideration of clinical, electrophysiological and imaging findings can resolve this apparent contradiction and lead to a diagnosis of early symptomatic post-stroke seizures that links brain structure to function in a new, clinically relevant way. CASE PRESENTATION: A 70-year-old patient was identified in clinical practice in our tertiary care centre and was evaluated clinically as well as by repeated electroencephalography and magnetic resonance imaging. The presenting complaint were recurrent episodes of short-term memory disturbance which manifested as isolated anterograde amnesia on neurocognitive evaluation. EEG and MRI revealed predominantly right frontotemporal spikes and a punctate diffusion-restricted lesion in the left hippocampus, respectively. Both symptoms and EEG changes subsided under anticonvulsant treatment with levetiracetam. CONCLUSIONS: Our report contributes to the current discussion of clinical challenges in the differential diagnosis of transient memory disturbance. It suggests that focal diffusion-restricted hippocampal lesions, as seen in TGA, might be ischemic and thus highlights the importance of considering post-stroke seizures as a possible cause of transient memory disturbance.


Assuntos
Amnésia Global Transitória , Idoso , Amnésia , Hipocampo , Humanos , Infarto , Convulsões
7.
J Neuroinflammation ; 18(1): 265, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34772416

RESUMO

BACKGROUND: Lymphocytes have dichotomous functions in ischemic stroke. Regulatory T cells are protective, while IL-17A from innate lymphocytes promotes the infarct growth. With recent advances of T cell-subtype specific transgenic mouse models it now has become possible to study the complex interplay of T cell subpopulations in ischemic stroke. METHODS: In a murine model of experimental stroke we analyzed the effects of IL-10 on the functional outcome for up to 14 days post-ischemia and defined the source of IL-10 in ischemic brains based on immunohistochemistry, flow cytometry, and bone-marrow chimeric mice. We used neutralizing IL-17A antibodies, intrathecal IL-10 injections, and transgenic mouse models which harbor a deletion of the IL-10R on distinct T cell subpopulations to further explore the interplay between IL-10 and IL-17A pathways in the ischemic brain. RESULTS: We demonstrate that IL-10 deficient mice exhibit significantly increased infarct sizes on days 3 and 7 and enlarged brain atrophy and impaired neurological outcome on day 14 following tMCAO. In ischemic brains IL-10 producing immune cells included regulatory T cells, macrophages, and microglia. Neutralization of IL-17A following stroke reversed the worse outcome in IL-10 deficient mice and intracerebral treatment with recombinant IL-10 revealed that IL-10 controlled IL-17A positive lymphocytes in ischemic brains. Importantly, IL-10 acted differentially on αß and γδ T cells. IL-17A producing CD4+ αß T cells were directly controlled via their IL-10-receptor (IL-10R), whereas IL-10 by itself had no direct effect on the IL-17A production in γδ T cells. The control of the IL-17A production in γδ T cells depended on an intact IL10R signaling in regulatory T cells (Tregs). CONCLUSIONS: Taken together, our data indicate a key function of IL-10 in restricting the detrimental IL-17A-signaling in stroke and further supports that IL-17A is a therapeutic opportunity for stroke treatment.


Assuntos
Interleucina-10/uso terapêutico , Interleucina-17/antagonistas & inibidores , AVC Isquêmico/tratamento farmacológico , Animais , Anticorpos Neutralizantes/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/prevenção & controle , Injeções Espinhais , Interleucina-10/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Interleucina-10/antagonistas & inibidores , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Resultado do Tratamento
8.
Mov Disord ; 36(12): 2795-2801, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34320236

RESUMO

BACKGROUND: Several monogenic causes for isolated dystonia have been identified, but they collectively account for only a small proportion of cases. Two genome-wide association studies have reported a few potential dystonia risk loci; but conclusions have been limited by small sample sizes, partial coverage of genetic variants, or poor reproducibility. OBJECTIVE: To identify robust genetic variants and loci in a large multicenter cervical dystonia cohort using a genome-wide approach. METHODS: We performed a genome-wide association study using cervical dystonia samples from the Dystonia Coalition. Logistic and linear regressions, including age, sex, and population structure as covariates, were employed to assess variant- and gene-based genetic associations with disease status and age at onset. We also performed a replication study for an identified genome-wide significant signal. RESULTS: After quality control, 919 cervical dystonia patients compared with 1491 controls of European ancestry were included in the analyses. We identified one genome-wide significant variant (rs2219975, chromosome 3, upstream of COL8A1, P-value 3.04 × 10-8 ). The association was not replicated in a newly genotyped sample of 473 cervical dystonia cases and 481 controls. Gene-based analysis identified DENND1A to be significantly associated with cervical dystonia (P-value 1.23 × 10-6 ). One low-frequency variant was associated with lower age-at-onset (16.4 ± 2.9 years, P-value = 3.07 × 10-8 , minor allele frequency = 0.01), located within the GABBR2 gene on chromosome 9 (rs147331823). CONCLUSION: The genetic underpinnings of cervical dystonia are complex and likely consist of multiple distinct variants of small effect sizes. Larger sample sizes may be needed to provide sufficient statistical power to address the presumably multi-genic etiology of cervical dystonia. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Estudo de Associação Genômica Ampla , Torcicolo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Frequência do Gene , Predisposição Genética para Doença/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Torcicolo/genética
9.
Brain Behav Immun ; 93: 277-287, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33388423

RESUMO

RATIONALE: Adhesion molecules are key elements in stroke-induced brain injury by regulating the migration of effector immune cells from the circulation to the lesion site. Platelet endothelial cell adhesion molecule-1 (PECAM-1) is an adhesion molecule highly expressed on endothelial cells and leukocytes, which controls the final steps of trans-endothelial migration. A functional role for PECAM-1 in post-ischemic brain injury has not yet been demonstrated. OBJECTIVE: Using genetic Pecam-1 depletion and PECAM-1 blockade using a neutralizing anti-PECAM-1 antibody, we evaluated the role of PECAM-1 mediated trans-endothelial immune cell migration for ischemic injury, delayed brain atrophy, and brain immune cell infiltrates. Trans-endothelial immune cell migration was furthermore evaluated in cultured human cerebral microvascular endothelial cells. METHODS AND RESULTS: Transient middle cerebral artery occlusion (tMCAO) was induced in 10-12-week-old male Pecam-1-/- and Pecam-1+/+ wildtype mice. PECAM-1 levels increased in the ischemic brain tissue due to the infiltration of PECAM-1+ leukocytes. Using magnetic resonance imaging, we observed smaller infarct volume, less edema formation, and less brain atrophy in Pecam-1-/- compared with Pecam-1+/+ wildtype mice. The transmigration of leukocytes, specifical neutrophils, was selectively reduced by Pecam-1-/-, as shown by immune fluorescence and flow cytometry in vivo and transmigration assays in vitro. Importantly, inhibition with an anti-PECAM-1 antibody in wildtype mice decreased neutrophil brain influx and infarct. CONCLUSION: PECAM-1 controls the trans-endothelial migration of neutrophils in a mouse model of ischemic stroke. Antibody blockade of PECAM-1 after stroke onset ameliorates stroke severity in mice, making PECAM-1 an interesting target to dampen post-stroke neuroinflammation, reduce ischemic brain injury, and enhance post-ischemic brain remodeling.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Movimento Celular , Células Endoteliais , Endotélio Vascular , Masculino , Camundongos , Camundongos Knockout , Neutrófilos , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Migração Transendotelial e Transepitelial
10.
Mol Cell Neurosci ; 102: 103420, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805346

RESUMO

Neuroserpin is a serine protease inhibitor of the nervous system required for normal synaptic plasticity and regulating cognitive, emotional and social behavior in mice. The high expression level of neuroserpin detected at late stages of nervous system formation in most regions of the brain points to a function in neurodevelopment. In order to evaluate the contribution of neuroserpin to brain development, we investigated developmental neurogenesis and neuronal differentiation in the hippocampus of neuroserpin-deficient mice. Moreover, synaptic reorganization and composition of perineuronal net were studied during maturation and stabilization of hippocampal circuits. We showed that absence of neuroserpin results in early termination of neuronal precursor proliferation and premature neuronal differentiation in the first postnatal weeks. Additionally, at the end of the critical period neuroserpin-deficient mice had changed morphology of dendritic spines towards a more mature phenotype. This was accompanied by increased protein levels and reduced proteolytic cleavage of aggrecan, a perineuronal net core protein. These data suggest a role for neuroserpin in coordinating generation and maturation of the hippocampus, which is essential for establishment of an appropriate neuronal network.


Assuntos
Espinhas Dendríticas/metabolismo , Neurogênese , Neuropeptídeos/metabolismo , Serpinas/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Células Cultivadas , Espinhas Dendríticas/fisiologia , Hipocampo/citologia , Hipocampo/embriologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Neuropeptídeos/genética , Serpinas/genética , Neuroserpina
11.
Hum Mol Genet ; 27(9): 1497-1513, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29447348

RESUMO

Genetic changes due to dietary intervention in the form of either calorie restriction (CR) or intermittent fasting (IF) are not reported in detail until now. However, it is well established that both CR and IF extend the lifespan and protect against neurodegenerative diseases and stroke. The current research aims were first to describe the transcriptomic changes in brains of IF mice and, second, to determine whether IF induces extensive transcriptomic changes following ischemic stroke to protect the brain from injury. Mice were randomly assigned to ad libitum feeding (AL), 12 (IF12) or 16 (IF16) h daily fasting. Each diet group was then subjected to sham surgery or middle cerebral artery occlusion and consecutive reperfusion. Mid-coronal sections of ipsilateral cerebral tissue were harvested at the end of the 1 h ischemic period or at 3, 12, 24 or 72 h of reperfusion, and genome-wide mRNA expression was quantified by RNA sequencing. The cerebral transcriptome of mice in AL group exhibited robust, sustained up-regulation of detrimental genetic pathways under ischemic stroke, but activation of these pathways was suppressed in IF16 group. Interestingly, the cerebral transcriptome of AL mice was largely unchanged during the 1 h of ischemia, whereas mice in IF16 group exhibited extensive up-regulation of genetic pathways involved in neuroplasticity and down-regulation of protein synthesis. Our data provide a genetic molecular framework for understanding how IF protects brain cells against damage caused by ischemic stroke, and reveal cellular signaling and bioenergetic pathways to target in the development of clinical interventions.


Assuntos
Isquemia Encefálica/genética , Jejum/fisiologia , Transcriptoma/genética , Animais , Restrição Calórica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
Int J Mol Sci ; 21(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182846

RESUMO

l-arginine:glycine amidinotransferase (AGAT) and its metabolites homoarginine (hArg) and creatine have been linked to stroke pathology in both human and mouse studies. However, a comprehensive understanding of the underlying molecular mechanism is lacking. To investigate transcriptional changes in cerebral AGAT metabolism, we applied a transcriptome analysis in brains of wild-type (WT) mice compared to untreated AGAT-deficient (AGAT-/-) mice and AGAT-/- mice with creatine or hArg supplementation. We identified significantly regulated genes between AGAT-/- and WT mice in two independent cohorts of mice which can be linked to amino acid metabolism (Ivd, Lcmt2), creatine metabolism (Slc6a8), cerebral myelination (Bcas1) and neuronal excitability (Kcnip3). While Ivd and Kcnip3 showed regulation by hArg supplementation, Bcas1 and Slc6a8 were creatine dependent. Additional regulated genes such as Pla2g4e and Exd1 need further evaluation of their influence on cerebral function. Experimental stroke models showed a significant regulation of Bcas1 and Slc6a8. Together, these results reveal that AGAT deficiency, hArg and creatine regulate gene expression in the brain, which may be critical in stroke pathology.


Assuntos
Amidinotransferases/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Arginina/metabolismo , Creatina/metabolismo , Regulação da Expressão Gênica/fisiologia , Glicina/metabolismo , Homoarginina/metabolismo , Deficiência Intelectual/metabolismo , Distúrbios da Fala/metabolismo , Amidinotransferases/metabolismo , Animais , Encéfalo/metabolismo , Deficiências do Desenvolvimento/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/metabolismo
13.
Int J Mol Sci ; 21(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443592

RESUMO

Schwannomatosis is the third form of neurofibromatosis and characterized by the occurrence of multiple schwannomas. The most prominent symptom is chronic pain. We aimed to test whether pain in schwannomatosis might be caused by small-fiber neuropathy. Twenty patients with schwannomatosis underwent neurological examination and nerve conduction studies. Levels of pain perception as well as anxiety and depression were assessed by established questionnaires. Quantitative sensory testing (QST) and laser-evoked potentials (LEP) were performed on patients and controls. Whole-body magnetic resonance imaging (wbMRI) and magnetic resonance neurography (MRN) were performed to quantify tumors and fascicular nerve lesions; skin biopsies were performed to determine intra-epidermal nerve fiber density (IENFD). All patients suffered from chronic pain without further neurological deficits. The questionnaires indicated neuropathic symptoms with significant impact on quality of life. Peripheral nerve tumors were detected in all patients by wbMRI. MRN showed additional multiple fascicular nerve lesions in 16/18 patients. LEP showed significant faster latencies compared to normal controls. Finally, IENFD was significantly reduced in 13/14 patients. Our study therefore indicates the presence of small-fiber neuropathy, predominantly of unmyelinated C-fibers. Fascicular nerve lesions are characteristic disease features that are associated with faster LEP latencies and decreased IENFD. Together these methods may facilitate differential diagnosis of schwannomatosis.


Assuntos
Fibras Nervosas/patologia , Neoplasias do Sistema Nervoso/etiologia , Neuralgia/patologia , Neurilemoma/complicações , Neurofibromatoses/complicações , Neoplasias Cutâneas/complicações , Adulto , Idoso , Dor Crônica , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias do Sistema Nervoso/diagnóstico por imagem , Neuralgia/etiologia , Neoplasias do Sistema Nervoso Periférico/diagnóstico por imagem , Neoplasias do Sistema Nervoso Periférico/etiologia , Fatores de Transcrição/genética , Imagem Corporal Total
14.
Brain Behav Immun ; 75: 34-47, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30195027

RESUMO

Stroke is the second leading cause of death in the world and a major cause of long-term disability. Recent evidence has provided insight into a newly described inflammatory mechanism that contributes to neuronal and glial cell death, and impaired neurological outcome following ischemic stroke - a form of sterile inflammation involving innate immune complexes termed inflammasomes. It has been established that inflammasome activation following ischemic stroke contributes to neuronal cell death, but little is known about inflammasome function and cell death in activated microglial cells following cerebral ischemia. Microglia are considered the resident immune cells that function as the primary immune defense in the brain. This study has comprehensively investigated the expression and activation of NLRP1, NLRP3, NLRC4 and AIM2 inflammasomes in isolates of microglial cells subjected to simulated ischemic conditions and in the brain following ischemic stroke. Immunoblot analysis from culture media indicated microglial cells release inflammasome components and inflammasome activation-dependent pro-inflammatory cytokines following ischemic conditions. In addition, a functional role for NLRC4 inflammasomes was determined using siRNA knockdown of NLRC4 and pharmacological inhibitors of caspase-1 and -8 to target apoptotic and pyroptotic cell death in BV2 microglial cells under ischemic conditions. In summary, the present study provides evidence that the NLRC4 inflammasome complex mediates the inflammatory response, as well as apoptotic and pyroptotic cell death in microglial cells under in vitro and in vivo ischemic conditions.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Inflamassomos/metabolismo , Acidente Vascular Cerebral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/fisiologia , Encéfalo/metabolismo , Isquemia Encefálica/imunologia , Isquemia Encefálica/fisiopatologia , Proteínas de Ligação ao Cálcio/fisiologia , Caspase 1/metabolismo , Morte Celular , Inflamassomos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios/metabolismo , Cultura Primária de Células , Piroptose/imunologia , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/imunologia
15.
Stroke ; 49(1): 155-164, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212740

RESUMO

BACKGROUND AND PURPOSE: Inflammatory mechanisms can exacerbate ischemic tissue damage and worsen clinical outcome in patients with stroke. Both αß and γδ T cells are established mediators of tissue damage in stroke, and the role of dendritic cells (DCs) in inducing the early events of T cell activation and differentiation in stroke is not well understood. METHODS: In a murine model of experimental stroke, we defined the immune phenotype of infiltrating DC subsets based on flow cytometry of surface markers, the expression of ontogenetic markers, and cytokine levels. We used conditional DC depletion, bone marrow chimeric mice, and IL-23 (interleukin-23) receptor-deficient mice to further explore the functional role of DCs. RESULTS: We show that the ischemic brain was rapidly infiltrated by IRF4+/CD172a+ conventional type 2 DCs and that conventional type 2 DCs were the most abundant subset in comparison with all other DC subsets. Twenty-four hours after ischemia onset, conventional type 2 DCs became the major source of IL-23, promoting neutrophil infiltration by induction of IL-17 (interleukin-17) in γδ T cells. Functionally, the depletion of CD11c+ cells or the genetic disruption of the IL-23 signaling abrogated both IL-17 production in γδ T cells and neutrophil infiltration. Interruption of the IL-23/IL-17 cascade decreased infarct size and improved neurological outcome after stroke. CONCLUSIONS: Our results suggest a central role for interferon regulatory factor 4-positive IL-23-producing conventional DCs in the IL-17-dependent secondary tissue damage in stroke.


Assuntos
Isquemia Encefálica/imunologia , Células Dendríticas/imunologia , Interleucina-17/imunologia , Interleucina-23/imunologia , Acidente Vascular Cerebral/imunologia , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Células Dendríticas/patologia , Modelos Animais de Doenças , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Interleucina-17/genética , Interleucina-23/genética , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/patologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
16.
Stroke ; 48(7): 1957-1965, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28611085

RESUMO

BACKGROUND AND PURPOSE: Immune-mediated tissue damage after stroke evolves within the first days, and lymphocytes contribute to the secondary injury. Our goal was to identify T-cell subpopulations, which trigger the immune response. METHODS: In a model of experimental stroke, we analyzed the immune phenotype of interleukin-17 (IL-17)-producing γδ T cells and explored the therapeutic potential of neutralizing anti-IL-17 antibodies in combination with mild therapeutic hypothermia. RESULTS: We show that brain-infiltrating IL-17-positive γδ T cells expressed the Vγ6 segment of the γδ T cells receptor and were largely positive for the chemokine receptor CCR6 (CC chemokine receptor 6), which is a characteristic for natural IL-17-producing γδ T cells. These innate lymphocytes are established as major initial IL-17 producers in acute infections. Genetic deficiency in Ccr6 was associated with diminished infiltration of natural IL-17-producing γδ T cells and a significantly improved neurological outcome. In the ischemic brain, IL-17 together with tumor necrosis factor-α triggered the expression of CXC chemokines and neutrophil infiltration. Therapeutic targeting of synergistic IL-17 and tumor necrosis factor-α pathways by IL-17 neutralization and therapeutic hypothermia resulted in additional protective effects in comparison to an anti-IL-17 antibody treatment or therapeutic hypothermia alone. CONCLUSIONS: Brain-infiltrating IL-17-producing γδ T cells belong to the subset of natural IL-17-producing γδ T cells. In stroke, these previously unrecognized innate lymphocytes trigger a highly conserved immune reaction, which is known from host responses toward pathogens. We demonstrate that therapeutic approaches targeting synergistic IL-17 and tumor necrosis factor-α pathways in parallel offer additional neuroprotection in stroke.


Assuntos
Interleucina-17/imunologia , Receptores CCR6/imunologia , Acidente Vascular Cerebral/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Movimento Celular , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
17.
Muscle Nerve ; 55(3): 350-358, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27422240

RESUMO

INTRODUCTION: The neuropathy in patients with neurofibromatosis type 2 (NF2) is difficult to quantify and follow up. In this study we compared 3 methods that may help assess motor axon pathology in NF2 patients. METHODS: Nerve conduction studies in median nerves were supplemented by deriving motor unit number estimates (MUNEs) from compound muscle action potential (CMAP) scans and by high-resolution ultrasound (US) peripheral nerve imaging. RESULTS: CMAP amplitudes and nerve conduction velocity were normal in the vast majority of affected individuals, but CMAP scan MUNE revealed denervation and reinnervation in many peripheral nerves. In addition, nerve US imaging enabled monitoring of the size and number of schwannoma-like fascicular enlargements in median nerve trunks. CONCLUSION: In contrast to conventional nerve conduction studies, CMAP scan MUNE in combination with US nerve imaging can quantify the NF2-associated neuropathy and may help to monitor disease progression and drug treatments. Muscle Nerve 55: 350-358, 2017.


Assuntos
Potenciais de Ação/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiopatologia , Neurofibromatose 2/diagnóstico por imagem , Neurofibromatose 2/patologia , Ultrassonografia , Adolescente , Adulto , Idoso , Criança , Eletrofisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/fisiologia , Condução Nervosa/fisiologia , Neurofibromatose 2/complicações , Nervos Periféricos/diagnóstico por imagem , Adulto Jovem
18.
Neurosurg Focus ; 43(5): E17, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29088953

RESUMO

OBJECTIVE The aim of this prospective study was to investigate the value of somatosensory evoked potentials (SEPs) in predicting outcome in patients with high-grade aneurysmal subarachnoid hemorrhage (SAH). METHODS Between January 2013 and January 2015, 48 patients with high-grade SAH (Hunt and Hess Grade III, IV, or V) who were admitted within 3 days after hemorrhage were enrolled in the study. Right and left median and tibial nerve SEPs were recorded on Day 3 after hemorrhage and recorded again 2 weeks later. Glasgow Outcome Scale (GOS) scores were determined 6 months after hemorrhage and dichotomized as poor (Scores 1-3) or good (Scores 4-5). Results of SEP measurements were dichotomized (present or missing cortical responses or normal or prolonged latencies) for each nerve and side. These variables were summed and tested using logistic regression and a receiver operating characteristic curve to assess the value of SEPs in predicting long-term outcome. RESULTS At the 6-month follow-up visit, 29 (60.4%) patients had a good outcome, and 19 (39.6%) had a poor outcome. The first SEP measurement did not correlate with clinical outcome (area under the curve [AUC] 0.69, p = 0.52). At the second measurement of median nerve SEPs, all patients with a good outcome had cortical responses present bilaterally, and none of them had bilateral prolonged latencies (p = 0.014 and 0.003, respectively). In tibial nerve SEPs, 7.7% of the patients with a good GOS score had one or more missing cortical responses, and bilateral prolonged latencies were found in 23% (p = 0.001 and 0.034, respectively). The second measurement correlated with the outcome regarding each of the median and tibial nerve SEPs and the combination of both (AUC 0.75 [p = 0.010], 0.793 [p = 0.003], and 0.81 [p = 0.001], respectively). CONCLUSIONS Early SEP measurement after SAH did not correlate with clinical outcome, but measurement of median and tibial nerve SEPs 2 weeks after a hemorrhage did predict long-term outcome in patients with high-grade SAH.


Assuntos
Potenciais Somatossensoriais Evocados/fisiologia , Aneurisma Intracraniano/complicações , Aneurisma Intracraniano/cirurgia , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento
20.
Circ Res ; 113(8): 1013-22, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23780386

RESUMO

RATIONALE: Blood-brain-barrier (BBB) breakdown and cerebral edema result from postischemic inflammation and contribute to mortality and morbidity after ischemic stroke. A functional role for the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in the regulation of reperfusion injury has not yet been demonstrated. OBJECTIVE: We sought to identify and characterize the relevance of CEACAM1-expressing inflammatory cells in BBB breakdown and outcome after ischemic stroke in Ceacam1(-/-) and wild-type mice. METHODS AND RESULTS: Focal ischemia was induced by temporary occlusion of the middle cerebral artery with a microfilament. Using MRI and Evans blue permeability assays, we observed increased stroke volumes, BBB breakdown and edema formation, reduction of cerebral perfusion, and brain atrophy in Ceacam1(-/-) mice. This translated into poor performance in neurological scoring and high poststroke-associated mortality. Elevated neutrophil influx, hyperproduction, and release of neutrophil-related matrix metalloproteinase-9 in Ceacam1(-/-) mice were confirmed by immune fluorescence, flow cytometry, zymography, and stimulation of neutrophils. Importantly, neutralization of matrix metalloproteinase-9 activity in Ceacam1(-/-) mice was sufficient to alleviate stroke sizes and improve survival to the level of CEACAM1-competent animals. Immune histochemistry of murine and human poststroke autoptic brains congruently identified abundance of CEACAM1(+)matrix metalloproteinase-9(+) neutrophils in the ischemic hemispheres. CONCLUSIONS: CEACAM1 controls matrix metalloproteinase-9 secretion by neutrophils in postischemic inflammation at the BBB after stroke. We propose CEACAM1 as an important inhibitory regulator of neutrophil-mediated tissue damage and BBB breakdown in focal cerebral ischemia.


Assuntos
Antígenos CD/metabolismo , Barreira Hematoencefálica/enzimologia , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/metabolismo , Infarto da Artéria Cerebral Média/enzimologia , Mediadores da Inflamação/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neutrófilos/enzimologia , Animais , Atrofia , Comportamento Animal , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Edema Encefálico/enzimologia , Edema Encefálico/imunologia , Edema Encefálico/patologia , Permeabilidade Capilar , Antígeno Carcinoembrionário/genética , Modelos Animais de Doenças , Citometria de Fluxo , Compostos Heterocíclicos com 1 Anel/farmacologia , Humanos , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/prevenção & controle , Imageamento por Ressonância Magnética , Masculino , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Atividade Motora , Exame Neurológico , Ativação de Neutrófilo , Infiltração de Neutrófilos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Sulfonas/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA