Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Mol Biol Lett ; 27(1): 20, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236282

RESUMO

BACKGROUND: EGFR targeting is currently the main treatment strategy for metastatic colorectal cancer (mCRC). Results of different clinical trials show that patients with wild-type KRAS and BRAF benefit from anti-EGFR monoclonal antibodies (moAbs) cetuximab (CTX) or panitumumab. Unfortunately, despite initial response, patients soon became refractory. Tumor heterogeneity and multiple escaping routes have been addressed as the main culprit, and, behind genomic alterations already described, changes in signaling pathways induced by drug pressure are emerging as mechanisms of acquired resistance. We previously reported an association between reduced sensitivity to CTX and increased expression of IL-1. However, how IL-1 mediates CTX resistance in mCRC is still unclear. METHODS: Under CTX treatment, the upregulation of IL-1R1 expression and a senescence program in sensitive colorectal cancer (CRC) cell lines is examined over time using qPCR, immunoblotting, and immunofluorescence. RESULTS: In sensitive CRC cells, IL-1 appeared responsible for a CTX-mediated G0 phase arrest. On the contrary, CTX-resistant CRC cells (CXR) maintained high mRNA levels of IL-1R1 and a post-senescence reprogramming, as indicated by increased SNAIL expression. Interestingly, treatment of CXR cells with a recombinant decoy, able to sequester the soluble form of IL-1, pushed CTX-resistant CRC cells back into a stage of senescence, thus blocking their proliferation. Our model suggests a trans-regulatory mechanism mediated by IL-1 on EGFR signaling. By establishing senescence and regulating EGFR activity and expression, IL-1 exposure ultimately bestows resistance. CONCLUSIONS: To sum up, our findings point to the combined blockage of IL-1R and EGFR as a promising therapeutical approach to restore sensitivity to EGFR-targeting monoclonal antibodies.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Interleucina-1/genética , Interleucina-1/farmacologia , Interleucina-1/uso terapêutico , Mutação
2.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825489

RESUMO

IL-1 belongs to a family of 11 members and is one of the seven receptor-agonists with pro-inflammatory activity. Beyond its biological role as a regulator of the innate immune response, IL-1 is involved in stress and chronic inflammation, therefore it is responsible for several pathological conditions. In particular, IL-1 is known to exert a critical function in malignancies, influencing the tumor microenvironment and promoting cancer initiation and progression. Thus, it orchestrates immunosuppression recruiting pro-tumor immune cells of myeloid origin. Furthermore, new recent findings showed that this cytokine can be directly produced by tumor cells in a positive feedback loop and contributes to the failure of targeted therapy. Activation of anti-apoptotic signaling pathways and senescence are some of the mechanisms recently proposed, but the role of IL-1 in tumor cells refractory to standard therapies needs to be further investigated.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Interleucina-1alfa/fisiologia , Interleucina-1beta/fisiologia , Neoplasias/patologia , Receptores de Interleucina-1/metabolismo , Animais , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Tolerância Imunológica/imunologia , Ligantes , Terapia de Alvo Molecular , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Receptores de Interleucina-1/antagonistas & inibidores , Microambiente Tumoral
3.
Biomedicines ; 12(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255260

RESUMO

The traditional perception of ribosomes as uniform molecular machines has been revolutionized by recent discoveries, revealing a complex landscape of ribosomal heterogeneity. Opposing the conventional belief in interchangeable ribosomal entities, emerging studies underscore the existence of specialized ribosomes, each possessing unique compositions and functions. Factors such as cellular and tissue specificity, developmental and physiological states, and external stimuli, including circadian rhythms, significantly influence ribosome compositions. For instance, muscle cells and neurons are characterized by distinct ribosomal protein sets and dynamic behaviors, respectively. Furthermore, alternative forms of ribosomal RNA (rRNAs) and their post-transcriptional modifications add another dimension to this heterogeneity. These variations, orchestrated by spatial, temporal, and conditional factors, enable the manifestation of a broad spectrum of specialized ribosomes, each tailored for potentially distinct functions. Such specialization not only impacts mRNA translation and gene expression but also holds significant implications for broader biological contexts, notably in the realm of cancer research. As the understanding of ribosomal diversity deepens, it also paves the way for exploring novel avenues in cellular function and offers a fresh perspective on the molecular intricacies of translation.

4.
Cancers (Basel) ; 15(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37296932

RESUMO

Extracellular vesicles (EVs) are of great interest to study the cellular mechanisms of cancer development and to diagnose and monitor cancer progression. EVs are a highly heterogeneous population of cell derived particles, which include microvesicles (MVs) and exosomes (EXOs). EVs deliver intercellular messages transferring proteins, lipids, nucleic acids, and metabolites with implications for tumour progression, invasiveness, and metastasis. Epidermal Growth Factor Receptor (EGFR) is a major driver of cancer. Tumour cells with activated EGFR could produce EVs disseminating EGFR itself or its ligands. This review provides an overview of EVs (mainly EXOs and MVs) and their cargo, with a subsequent focus on their production and effects related to EGFR activation. In particular, in vitro studies performed in EGFR-dependent solid tumours and/or cell cultures will be explored, thus shedding light on the interplay between EGFR and EVs production in promoting cancer progression, metastases, and resistance to therapies. Finally, an overview of liquid biopsy approaches involving EGFR and EVs in the blood/plasma of EGFR-dependent tumour patients will also be discussed to evaluate their possible application as candidate biomarkers.

5.
Commun Biol ; 6(1): 1044, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838732

RESUMO

Little is known about the signaling network responsible for the organization of the perinuclear actin cap, a recently identified structure holding unique roles in the regulation of nuclear shape and cell directionality. In cancer cells expressing a constitutively active MET, we show a rearrangement of the actin cap filaments, which crash into perinuclear patches associated with spherical nuclei, meandering cell motility and inactivation of the mechano-transducer YAP1. MET ablation is sufficient to reactivate YAP1 and restore the cap, leading to enhanced directionality and flattened nuclei. Consistently, the introduction of a hyperactive MET in normal epithelial cells, enhances nuclear height and alters the cap organization, as also confirmed by TEM analysis. Finally, the constitutively active YAP1 mutant YAP5SA is able to overcome the effects of oncogenic MET. Overall, our work describes a signaling axis empowering MET-mediated YAP1 dampening and actin cap misalignment, with implications for nuclear shape and cell motility.


Assuntos
Citoesqueleto de Actina , Actinas , Núcleo Celular , Movimento Celular/fisiologia , Citosol
6.
Front Cell Dev Biol ; 10: 1083743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712972

RESUMO

Historically, senescence has been considered a safe program in response to multiple stresses in which cells undergo irreversible growth arrest. This process is characterized by morphological and metabolic changes, heterochromatin formation, and secretion of inflammatory components, known as senescence-associated secretory phenotype (SASP). However, recent reports demonstrated that anti-cancer therapy itself can stimulate a senescence response in tumor cells, the so-called therapy-induced senescence (TIS), which may represent a temporary bypass pathway that promotes drug resistance. In this context, several studies have shown that EGFR blockage, by TKIs or moAbs, promotes TIS by increasing IL-1 cytokine production, thus pushing cells into a "pseudo-senescent" state. Today, senotherapeutic agents are emerging as a potential strategy in cancer treatment thanks to their dual role in annihilating senescent cells and simultaneously preventing their awakening into a resistant and aggressive form. Here, we summarize classic and recent findings about the cellular processes driving senescence and SASP, and we provide a state-of-the-art of the anti-cancer strategies available so far that exploits the activation and/or blockade of senescence-based mechanisms.

7.
J Exp Clin Cancer Res ; 41(1): 113, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351152

RESUMO

BACKGROUND: In the last years, several efforts have been made to classify colorectal cancer (CRC) into well-defined molecular subgroups, representing the intrinsic inter-patient heterogeneity, known as Consensus Molecular Subtypes (CMSs). METHODS: In this work, we performed a meta-analysis of CRC patients stratified into four CMSs. We identified a negative correlation between a high level of anaplastic lymphoma kinase (ALK) expression and relapse-free survival, exclusively in CMS1 subtype. Stemming from this observation, we tested cell lines, patient-derived organoids and mice with potent ALK inhibitors, already approved for clinical use. RESULTS: ALK interception strongly inhibits cell proliferation already at nanomolar doses, specifically in CMS1 cell lines, while no effect was found in CMS2/3/4 groups. Furthermore, in vivo imaging identified a role for ALK in the dynamic formation of 3D tumor spheroids. Consistently, ALK appeares constitutively phosphorylated in CMS1, and it signals mainly through the AKT axis. Mechanistically, we found that CMS1 cells display several copies of ALKAL2 ligand and ALK-mRNAs, suggesting an autocrine loop mediated by ALKAL2 in the activation of ALK pathway, responsible for the invasive phenotype. Consequently, disruption of ALK axis mediates the pro-apoptotic action of CMS1 cell lines, both in 2D and 3D and enhanced cell-cell adhesion and e-cadherin organization. In agreement with all these findings, the ALK signature encompassing 65 genes statistically associated with worse relapse-free survival in CMS1 subtype. Finally, as a proof of concept, the efficacy of ALK inhibition was demonstrated in both patient-derived organoids and in tumor xenografts in vivo. CONCLUSIONS: Collectively, these findings suggest that ALK targeting may represent an attractive therapy for CRC, and CMS classification may provide a useful tool to identify patients who could benefit from this treatment. These findings offer rationale and pharmacological strategies for the treatment of CMS1 CRC.


Assuntos
Quinase do Linfoma Anaplásico , Neoplasias do Colo , Citocinas , Quinase do Linfoma Anaplásico/genética , Animais , Neoplasias do Colo/genética , Citocinas/genética , Humanos , Ligantes , Camundongos , Recidiva Local de Neoplasia
8.
J Clin Med ; 8(5)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052457

RESUMO

Evidences of a crosstalk between Epidermal Growth Factor Receptor (EGFR) and Glucocorticoid Receptor (GR) has been reported, ranging from the modulation of receptor levels or GR mediated transcriptional repression of EGFR target genes, with modifications of epigenetic markers. The present study focuses on the involvement of EGFR positive and negative feedback genes in the establishment of cetuximab (CTX) resistance in metastatic Colorectal Cancer (CRC) patients. We evaluated the expression profile of the EGFR ligands TGFA and HBEGF, along with the pro-inflammatory cytokines IL-1B and IL-8, which were previously reported to be negatively associated with monoclonal antibody response, both in mice and patient specimens. Among EGFR negative feedback loops, we focused on ERRFI1, DUSP1, LRIG3, and LRIG1. We observed that EGFR positive feedback genes are increased in CTX-resistant cells, whereas negative feedback genes are reduced. Next, we tested the expression of these genes in CTX-resistant cells upon GR modulation. We unveiled that GR activation leads to an increase in ERRFI1, DUSP1, and LRIG1, which were shown to restrict EGFR activity, along with a decrease in the EGFR activators (TGFA and IL-8). Finally, in a cohort of xenopatients, stratified for response to cetuximab, we observed an inverse association between the expression level of LRIG1 and CRC progression upon CTX treatment. Our model implies that combining GR modulation to EGFR inhibition may yield an effective treatment strategy in halting cancer progression.

9.
Cancers (Basel) ; 10(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261609

RESUMO

Cetuximab (CTX) is a monoclonal antibody targeting the epidermal growth factor receptor (EGFR), commonly used to treat patients with metastatic colorectal cancer (mCRC). Unfortunately, objective remissions occur only in a minority of patients and are of short duration, with a population of cells surviving the treatment and eventually enabling CTX resistance. Our previous study on CRC xenopatients associated poor response to CTX with increased abundance of a set of pro-inflammatory cytokines, including the interleukins IL-1A, IL-1B and IL-8. Stemming from these observations, our current work aimed to assess the role of IL-1 pathway activity in CTX resistance. We employed a recombinant decoy TRAP IL-1, a soluble protein combining the human immunoglobulin Fc portion linked to the extracellular region of the IL-1-receptor (IL-1R1), able to sequester IL-1 directly from the medium. We generated stable clones expressing and secreting a functional TRAP IL-1 into the culture medium. Our results show that IL-1R1 inhibition leads to a decreased cell proliferation and a dampened MAPK and AKT axes. Moreover, CRC patients not responding to CTX blockage displayed higher levels of IL-1R1 than responsive subjects, and abundant IL-1R1 is predictive of survival in patient datasets specifically for the consensus molecular subtype 1 (CMS1). We conclude that IL-1R1 abundance may represent a therapeutic marker for patients who become refractory to monoclonal antibody therapy, while inhibition of IL-1R1 by TRAP IL-1 may offer a novel therapeutic strategy.

10.
Oncotarget ; 7(44): 72167-72183, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27708224

RESUMO

Epidermal Growth Factor Receptor (EGFR) activates a robust signalling network to which colon cancer tumours often become addicted. Cetuximab, one of the monoclonal antibodies targeting this pathway, is employed to treat patients with colorectal cancer. However, many patients are intrinsically refractory to this treatment, and those who respond develop secondary resistance along time. Mechanisms of cancer cell resistance include either acquisition of new mutations or non genomic activation of alternative signalling routes. In this study, we employed a colon cancer model to assess potential mechanisms driving resistance to cetuximab. Resistant cells displayed increased ability to grow in suspension as colonspheres and this phenotype was associated with poorly organized structures. Factors secreted from resistant cells were causally involved in sustaining resistance, indeed administration to parental cells of conditioned medium collected from resistant cells was sufficient to reduce cetuximab efficacy. Among secreted factors, we report herein that a signature of inflammatory cytokines, including IL1A, IL1B and IL8, which are produced following EGFR pathway activation, was associated with the acquisition of an unresponsive phenotype to cetuximab in vitro. This signature correlated with lack of response to EGFR targeting also in patient-derived tumour xenografts. Collectively, these results highlight the contribution of inflammatory cytokines to reduced sensitivity to EGFR blockade and suggest that inhibition of this panel of cytokines in combination with cetuximab might yield an effective treatment strategy for CRC patients refractory to anti-EGFR targeting.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Cetuximab/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Animais , Anticorpos Monoclonais , Anticorpos Monoclonais Humanizados , Antineoplásicos Imunológicos/uso terapêutico , Células CACO-2 , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Cetuximab/uso terapêutico , Neoplasias Colorretais/patologia , Receptores ErbB/antagonistas & inibidores , Humanos , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Microscopia Confocal , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/metabolismo , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA