Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Blood ; 137(17): 2285-2298, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33657208

RESUMO

Permanent availability of red blood cells (RBCs) for transfusion depends on refrigerated storage, during which morphologically altered RBCs accumulate. Among these, a subpopulation of small RBCs, comprising type III echinocytes, spheroechinocytes, and spherocytes and defined as storage-induced microerythrocytes (SMEs), could be rapidly cleared from circulation posttransfusion. We quantified the proportion of SMEs in RBC concentrates from healthy human volunteers and assessed correlation with transfusion recovery, investigated the fate of SMEs upon perfusion through human spleen ex vivo, and explored where and how SMEs are cleared in a mouse model of blood storage and transfusion. In healthy human volunteers, high proportion of SMEs in long-stored RBC concentrates correlated with poor transfusion recovery. When perfused through human spleen, 15% and 61% of long-stored RBCs and SMEs were cleared in 70 minutes, respectively. High initial proportion of SMEs also correlated with high retention of RBCs by perfused human spleen. In the mouse model, SMEs accumulated during storage. Transfusion of long-stored RBCs resulted in reduced posttransfusion recovery, mostly due to SME clearance. After transfusion in mice, long-stored RBCs accumulated predominantly in spleen and were ingested mainly by splenic and hepatic macrophages. In macrophage-depleted mice, splenic accumulation and SME clearance were delayed, and transfusion recovery was improved. In healthy hosts, SMEs were cleared predominantly by macrophages in spleen and liver. When this well-demarcated subpopulation of altered RBCs was abundant in RBC concentrates, transfusion recovery was diminished. SME quantification has the potential to improve blood product quality assessment. This trial was registered at www.clinicaltrials.gov as #NCT02889133.


Assuntos
Preservação de Sangue , Eritrócitos , Animais , Transfusão de Eritrócitos , Cinética , Camundongos , Esferócitos
2.
Artigo em Inglês | MEDLINE | ID: mdl-30104272

RESUMO

The endotracheal tube (ETT) is an essential interface between the patient and ventilator in mechanically ventilated patients. However, a microbial biofilm is formed gradually on this tube and is associated with the development of ventilator-associated pneumonia. The bacteria present in the biofilm are more resistant to antibiotics, and current medical practices do not make it possible to eliminate. Pseudomonas aeruginosa is one of the leading pathogens that cause biofilm infections and ventilator-associated pneumonia. Poly-l-lysine (pLK) is a cationic polypeptide possessing antibacterial properties and mucolytic activity by compacting DNA. Here, we explored the antibiofilm activity of pLK to treat P. aeruginosa biofilms on ETTs while taking into consideration the necessary constraints for clinical translation in our experimental designs. First, we showed that pLK eradicates a P. aeruginosa biofilm formed in vitro on 96-well microplates. We further demonstrated that pLK alters bacterial membrane integrity, as revealed by scanning electron microscopy, and eventually eradicates biofilm formed either by reference or clinical strains of P. aeruginosa biofilms generated in vitro on ETTs. Second, we collected the ETT from patients with P. aeruginosa ventilator-associated pneumonia. We observed that a single dose of pLK is able to immediately disrupt the biofilm structure and kills more than 90% of bacteria present in the biofilm. Additionally, we did not observe any lung tolerance issue when the pLK solution was instilled into the ETT of ventilated pigs, an animal model particularly relevant to mimic invasive mechanical ventilation in humans. In conclusion, pLK appears as an innovative antibiofilm molecule, which could be applied in the ETT of mechanically ventilated patients.


Assuntos
Biofilmes/efeitos dos fármacos , Intubação Intratraqueal/efeitos adversos , Polilisina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Respiração Artificial/efeitos adversos , Animais , Antibacterianos/farmacologia , Contaminação de Equipamentos , Humanos , Microscopia Eletrônica de Varredura/métodos , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Suínos
3.
J Gen Virol ; 97(2): 480-486, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26612074

RESUMO

T-lymphocytes are central targets of Marek's disease, a major chicken disease induced by the oncogenic alphaherpesvirus Marek's disease virus (MDV). T-lymphocyte infection is also associated with immunosuppression and virus latency. To decipher viral morphogenesis in T-lymphocytes, we used the recombinant vRB-1B 47EGFP marker virus to generate a new lymphoblastoid cell line, 3867K, that exhibited typical properties of other MDV-transformed chicken cell lines in term of cell markers, reactivation rate and infectivity. Examination of reactivating EGFP-positive 3867K cells by transmission electron microscopy revealed the presence of most types of herpesvirus particles inside the cells but no extracellular ones. Quantification of virion types indicated only 5% cytoplasmic particles, with 0.5% being mature. This study demonstrated that MDV morphogenesis is complete upon reactivation in T-lymphocytes, albeit with poor efficiency, with a defect in the exit of virions from the nucleus and secondary envelopment, as occurs in infected fibroblasts.


Assuntos
Herpesvirus Galináceo 2/fisiologia , Linfócitos T/virologia , Vírion/ultraestrutura , Ativação Viral , Montagem de Vírus , Animais , Linhagem Celular , Galinhas , Fibroblastos/virologia , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Herpesvirus Galináceo 2/genética , Microscopia Eletrônica de Transmissão , Biologia Molecular/métodos , Virologia/métodos
4.
Protein Expr Purif ; 116: 1-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26325423

RESUMO

Non-structural protein 2 (NS2) of the hepatitis C virus (HCV) is an integral membrane protein that contains a cysteine protease and that plays a central organizing role in assembly of infectious progeny virions. While the crystal structure of the protease domain has been solved, the NS2 full-length form remains biochemically and structurally uncharacterized because recombinant NS2 could not be prepared in sufficient quantities from cell-based systems. We show here that functional NS2 in the context of the NS2-NS3pro precursor protein, ensuring NS2-NS3 cleavage, can be efficiently expressed by using a wheat germ cell-free expression system. In this same system, we subsequently successfully produce and purify milligram amounts of a detergent-solubilized form of full-length NS2 exhibiting the expected secondary structure content. Furthermore, immuno-electron microscopy analyses of reconstituted proteoliposomes demonstrate NS2 association with model membranes.


Assuntos
Hepacivirus/química , Hepacivirus/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Sistema Livre de Células/metabolismo , Cromatografia em Gel , Clonagem Molecular , Detergentes/química , Expressão Gênica , Hepatite C/virologia , Lipossomos/química , Lipídeos de Membrana/química , Dados de Sequência Molecular , Plasmídeos/genética , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Solubilidade , Triticum/genética , Proteínas não Estruturais Virais/isolamento & purificação
5.
mBio ; 15(5): e0348823, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534200

RESUMO

Bacteroides thetaiotaomicron is a prominent member of the human gut microbiota contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm lifestyle, and it was recently shown that B. thetaiotaomicron biofilm formation is promoted by the presence of bile. This process also requires a B. thetaiotaomicron extracellular DNase, which is not, however, regulated by bile. Here, we showed that bile induces the expression of several Resistance-Nodulation-Division (RND) efflux pumps and that inhibiting their activity with a global competitive efflux inhibitor impaired bile-dependent biofilm formation. We then showed that, among the bile-induced RND-efflux pumps, only the tripartite BT3337-BT3338-BT3339 pump, re-named BipABC [for Bile Induced Pump A (BT3337), B (BT3338), and C (BT3339)], is required for biofilm formation. We demonstrated that BipABC is involved in the efflux of magnesium to the biofilm extracellular matrix, which leads to a decrease of extracellular DNA concentration. The release of magnesium in the biofilm matrix also impacts biofilm structure, potentially by modifying the electrostatic repulsion forces within the matrix, reducing interbacterial distance and allowing bacteria to interact more closely and form denser biofilms. Our study therefore, identified a new molecular determinant of B. thetaiotaomicron biofilm formation in response to bile salts and provides a better understanding on how an intestinal chemical cue regulates biofilm formation in a major gut symbiont.IMPORTANCEBacteroides thetaiotaomicron is a prominent member of the human gut microbiota able to degrade dietary and host polysaccharides, altogether contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm community lifestyle, providing protection against environmental factors that might, in turn, protect the host from dysbiosis and dysbiosis-related diseases. It was recently shown that B. thetaiotaomicron exposure to intestinal bile promotes biofilm formation. Here, we reveal that a specific B. thetaiotaomicron membrane efflux pump is induced in response to bile, leading to the release of magnesium ions, potentially reducing electrostatic repulsion forces between components of the biofilm matrix. This leads to a reduction of interbacterial distance and strengthens the biofilm structure. Our study, therefore, provides a better understanding of how bile promotes biofilm formation in a major gut symbiont, potentially promoting microbiota resilience to stress and dysbiosis events.


Assuntos
Proteínas de Bactérias , Bacteroides thetaiotaomicron , Bile , Biofilmes , Magnésio , Biofilmes/crescimento & desenvolvimento , Bacteroides thetaiotaomicron/fisiologia , Bacteroides thetaiotaomicron/metabolismo , Magnésio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Bile/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Microbioma Gastrointestinal/fisiologia , Regulação Bacteriana da Expressão Gênica
6.
Can J Microbiol ; 58(3): 311-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22356530

RESUMO

The aim of this study was to unravel, by focusing on cell surface properties, the underlying virulence factors contributing to the difference in the pathogenicity observed in two Acinetobacter baumannii strains isolated from the same patient. The two strains were phenotypically different: (i) a mucoid strain (AB-M), highly virulent in a mouse model of pneumonia, and (ii) a nonmucoid strain (AB-NM), moderately virulent in the same model. The study of the cell surface properties included the microbial adhesion to solvents method, the measurement of the electrophoretic mobility of bacteria, the analysis of biofilm formation by calcofluor white staining, the adherence to silicone catheters, and scanning electron microscopy. The AB-NM strain was more hydrophobic, more adherent to silicone catheters, and produced more biofilm than the AB-M strain. Scanning electron microscopy showed bacterial cells with a rough surface and the formation of large cell clusters for AB-NM whereas the AB-M strain had a smooth surface and formed only a few cell clusters. Contrary to the results of most previous studies, cell surface properties were not correlated to the virulence described in our experimental model, indicating that mechanisms other than adherence may be involved in the expression of A. baumannii virulence.


Assuntos
Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidade , Virulência/fisiologia , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/ultraestrutura , Animais , Aderência Bacteriana , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/ultraestrutura , Biofilmes , Catéteres/microbiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Fatores de Virulência/metabolismo
7.
Front Physiol ; 13: 838013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574476

RESUMO

The chicken eggshell (ES) consists of 95% calcium carbonate and 3.5% organic matter, and represents the first physical barrier to protect the developing embryo, while preventing water loss. During the second half of development, calcium ions from the inner ES are progressively solubilized to support mineralization of the embryonic skeleton. This process is mediated by the chorioallantoic membrane (CAM), which is an extraembryonic structure that adheres to the eggshell membranes (ESM) lining the inner ES. The CAM surrounds the embryo and all egg contents by day 11 of incubation (Embryonic Incubation Day 11, EID11) and is fully differentiated and functionally active by day 15 of incubation (Embryonic Incubation Day 15, EID15). In this study, we explored the simultaneous morphological modifications in the ES, ESM and the CAM at EID11 and EID15 by scanning electron microscopy. We observed that the tips of the mammillary knobs of the ES remain tightly attached to the ESM fibers, while their bases become progressively eroded and then detached from the bulk ES. Concomitantly, the CAM undergoes major structural changes that include the progressive differentiation of villous cells whose villi extend to reach the ESM and the ES. These structural data are discussed with respect to the importance of ES decalcification in providing the calcium necessary for mineralization of embryo's skeleton. In parallel, eggshell decalcification and weakening during incubation is likely to impair the ability of the ES to protect the embryo. It is assumed that the CAM could counteract this apparent weakening as an additional layer of physical, cellular and molecular barriers against environmental pressures, including pathogens, dehydration and shocks. However, such hypothesis needs to be further investigated.

8.
PLoS One ; 17(10): e0271448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36206252

RESUMO

Protocols allowing the in vitro culture of human hair follicles in a serum free-medium up to 9 days were developed 30 years ago. By using similar protocols, we achieved the prolonged maintenance in vitro of juvenile feather follicles (FF) microdissected from young chickens. Histology showed a preservation of the FF up to 7 days as well as feather morphology compatible with growth and/or differentiation. The integrity of the FF wall epithelium was confirmed by transmission electron microscopy at Day 5 and 7 of culture. A slight elongation of the feathers was detected up to 5 days for 75% of the examined feathers. By immunochemistry, we demonstrated the maintenance of expression and localization of two structural proteins: scaffoldin and fibronectin. Gene expression (assessed by qRT-PCR) of NCAM, LCAM, Wnt6, Notch1, and BMP4 was not altered. In contrast, Shh and HBS1 expression collapsed, DKK3 increased, and KRT14 transiently increased upon cultivation. This indicates that cultivation modifies the mRNA expression of a few genes, possibly due to reduced growth or cell differentiation in the feather, notably in the barb ridges. In conclusion, we have developed the first method that allows the culture and maintenance of chicken FF in vitro that preserves the structure and biology of the FF close to its in vivo state, despite transcriptional modifications of a few genes involved in feather development. This new culture model may serve to study feather interactions with pathogens or toxics and constitutes a way to reduce animal experimentation.


Assuntos
Galinhas , Plumas , Animais , Evolução Biológica , Galinhas/genética , Plumas/metabolismo , Fibronectinas/metabolismo , Folículo Piloso , Humanos , Morfogênese , Moléculas de Adesão de Célula Nervosa/metabolismo , RNA Mensageiro/genética
9.
Front Physiol ; 13: 838138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283784

RESUMO

Refrigerated storage of red cell concentrates before transfusion is associated with progressive alterations of red blood cells (RBC). Small RBC (type III echinocytes, sphero-echinocytes, and spherocytes) defined as storage-induced micro-erythrocytes (SME) appear during pretransfusion storage. SME accumulate with variable intensity from donor to donor, are cleared rapidly after transfusion, and their proportion correlates with transfusion recovery. They can be rapidly and objectively quantified using imaging flow cytometry (IFC). Quantifying SME using flow cytometry would further facilitate a physiologically relevant quality control of red cell concentrates. RBC stored in blood bank conditions were stained with a carboxyfluorescein succinimidyl ester (CFSE) dye and incubated at 37°C. CFSE intensity was assessed by flow cytometry and RBC morphology evaluated by IFC. We observed the accumulation of a CFSE high RBC subpopulation by flow cytometry that accounted for 3.3 and 47.2% at day 3 and 42 of storage, respectively. IFC brightfield images showed that this CFSE high subpopulation mostly contains SME while the CFSE low subpopulation mostly contains type I and II echinocytes and discocytes. Similar numbers of SME were quantified by IFC (based on projected surface area) and by flow cytometry (based on CFSE intensity). IFC and scanning electron microscopy showed that ≥95% pure subpopulations of CFSE high and CFSE low RBC were obtained by flow cytometry-based sorting. SME can now be quantified using a common fluorescent dye and a standard flow cytometer. The staining protocol enables specific sorting of SME, a useful tool to further characterize this RBC subpopulation targeted for premature clearance after transfusion.

10.
J Proteomics ; 258: 104489, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35066209

RESUMO

The avian egg perivitelline layer (PL) is a proteinaceous structure that encloses the egg yolk. It consists of the inner and the outer perivitelline layers (IPL and OPL, respectively) that are assumed to play distinct roles in bird reproduction. To gain insight into their respective function, we analyzed the proteome of IPL and OPL in chicken unfertilized eggs after mechanical separation, using a GeLC-MS/MS strategy. Of the 412 proteins identified, 173 proteins were uniquely recovered in IPL and 98 proteins in OPL, while 141 proteins were identified in both sublayers. Genes coding the most abundant proteins were shown to be expressed either in the liver/ovary (IPL formation) or in the oviduct (OPL formation), but rarely in both. The presence of oviduct-specific proteins (including LYZ, VMO1, AvBD11, PTN, OVAL and LOC10175704) in IPL strongly suggests that they participate in the physical association of IPL to OPL, whose tight attachment was further evidenced by analyses of IPL/OPL interfaces (by scanning electron microscopy). Functional annotation of identified proteins revealed functions associated with fertilization and early development for IPL, while OPL would rather participate in egg defense and embryogenesis. Collectively, our data highlight the complementary functions of IPL and OPL that are major determinants of bird reproductive success. SIGNIFICANCE: The present study unveils for the first time the individual proteomes of the two sublayers composing the chicken egg perivitelline layer (PL), which allowed to assign their respective putative biological roles in avian reproduction. The combination of proteomics with gene expression and ultrastructural analyses provides insightful data on the structure and biochemistry of the avian PL. The functional annotation of PL proteins highlights the multifaceted biological functions of this structure in reproduction including fertilization, embryonic development, and antimicrobial protection. This work will stimulate further research to validate predicted functions and to compare the physiology and the functional specificities of PL in egg-laying species.


Assuntos
Galinhas , Proteoma , Animais , Galinhas/metabolismo , Feminino , Óvulo , Proteoma/metabolismo , Interações Espermatozoide-Óvulo/fisiologia , Espectrometria de Massas em Tandem
11.
iScience ; 23(12): 101871, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33336164

RESUMO

Boron-containing compounds represent a promising class of molecules with proven efficacy against a wide range of pathogens, including apicomplexan parasites. Following lead optimization, the benzoxaborole AN13762 was identified as a preclinical candidate against the human malaria parasite, yet the molecular target remained uncertain. Here, we uncovered the parasiticidal mechanisms of AN13762, by combining forward genetics with transcriptome sequencing and computational mutation discovery and using Toxoplasma gondii as a relevant model for Apicomplexa. AN13762 was shown to target TgCPSF3, the catalytic subunit of the pre-mRNA cleavage and polyadenylation complex, as the anti-pan-apicomplexan benzoxaborole compound, AN3661. However, unique mutations within the TgCPSF3 catalytic site conferring resistance to AN13762 do not confer cross-protection against AN3661, suggesting a divergent resistance mechanism. Finally, in agreement with the high sequence conservation of CPSF3 between Toxoplasma and Cryptosporidium, AN13762 shows oral efficacy in cryptosporidiosis mouse model, a disease for which new drug development is of high priority.

12.
BMC Microbiol ; 9: 177, 2009 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-19703288

RESUMO

BACKGROUND: Aspergillus fumigatus is the most common agent of invasive aspergillosis, a feared complication in severely immunocompromised patients. Despite the recent commercialisation of new antifungal drugs, the prognosis for this infection remains uncertain. Thus, there is a real need to discover new targets for therapy. Particular attention has been paid to the biochemical composition and organisation of the fungal cell wall, because it mediates the host-fungus interplay. Conidia, which are responsible for infections, have melanin as one of the cell wall components. Melanin has been established as an important virulence factor, protecting the fungus against the host's immune defences. We suggested that it might also have an indirect role in virulence, because it is required for correct assembly of the cell wall layers of the conidia. RESULTS: We used three A. fumigatus isolates which grew as white or brown powdery colonies, to demonstrate the role of melanin. Firstly, sequencing the genes responsible for biosynthesis of melanin (ALB1, AYG1, ARP1, ARP2, ABR1 and ABR2) showed point mutations (missense mutation, deletion or insertion) in the ALB1 gene for pigmentless isolates or in ARP2 for the brownish isolate. The isolates were then shown by scanning electron microscopy to produce numerous, typical conidial heads, except that the conidia were smooth-walled, as previously observed for laboratory mutants with mutations in the PKSP/ALB1 gene. Flow cytometry showed an increase in the fibronectin binding capacity of conidia from mutant isolates, together with a marked decrease in the binding of laminin to the conidial surface. A marked decrease in the electronegative charge of the conidia and cell surface hydrophobicity was also seen by microelectrophoresis and two-phase partitioning, respectively. Ultrastructural studies of mutant isolates detected considerable changes in the organisation of the conidial wall, with the loss of the outermost electron dense layer responsible for the ornamentations seen on the conidial surface in wild-type strains. Finally, analysis of the conidial surface of mutant isolates by atomic force microscopy demonstrated the absence of the outer cell wall rodlet layer which is composed of hydrophobins. CONCLUSION: These results suggest that, in addition to a protective role against the host's immune defences, melanin is also a structural component of the conidial wall that is required for correct assembly of the cell wall layers and the expression at the conidial surface of adhesins and other virulence factors.


Assuntos
Aspergillus fumigatus/genética , Parede Celular/química , Melaninas/biossíntese , Esporos Fúngicos/ultraestrutura , Aspergilose/microbiologia , Aspergillus fumigatus/patogenicidade , Aspergillus fumigatus/ultraestrutura , Parede Celular/ultraestrutura , DNA Fúngico/genética , Citometria de Fluxo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Microscopia Eletrônica de Varredura , Análise de Sequência de DNA , Esporos Fúngicos/genética , Virulência/genética
13.
Sci Transl Med ; 11(517)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694928

RESUMO

Cryptosporidium is an intestinal pathogen that causes severe but self-limiting diarrhea in healthy humans, yet it can turn into a life-threatening, unrelenting infection in immunocompromised patients and young children. Severe diarrhea is recognized as the leading cause of mortality for children below 5 years of age in developing countries. The only approved treatment against cryptosporidiosis, nitazoxanide, has limited efficacy in the most vulnerable patient populations, including malnourished children, and is ineffective in immunocompromised individuals. Here, we investigate inhibition of the parasitic cleavage and polyadenylation specificity factor 3 (CPSF3) as a strategy to control Cryptosporidium infection. We show that the oxaborole AN3661 selectively blocked Cryptosporidium growth in human HCT-8 cells, and oral treatment with AN3661 reduced intestinal parasite burden in both immunocompromised and neonatal mouse models of infection with greater efficacy than nitazoxanide. Furthermore, we present crystal structures of recombinantly produced Cryptosporidium CPSF3, revealing a mechanism of action whereby the mRNA processing activity of this enzyme is efficiently blocked by the binding of the oxaborole group at the metal-dependent catalytic center. Our data provide insights that may help accelerate the development of next-generation anti-Cryptosporidium therapeutics.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Criptosporidiose/genética , Criptosporidiose/parasitologia , Cryptosporidium/genética , Metais/química , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , Animais , Antiparasitários/química , Antiparasitários/farmacologia , Linhagem Celular Tumoral , Fator de Especificidade de Clivagem e Poliadenilação/química , Cristalização , Humanos , Íleo/parasitologia , Íleo/ultraestrutura , Camundongos Endogâmicos C57BL , Modelos Moleculares , Proteínas Recombinantes/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-30148118

RESUMO

To establish an infection, Salmonella has to interact with eukaryotic cells. Invasion of non-phagocytic cells (i.e., epithelial, fibroblast and endothelial cells) involves either a trigger or a zipper mechanism mediated by the T3SS-1 or the invasin Rck, respectively. Another outer membrane protein, PagN, was also implicated in the invasion. However, other unknown invasion factors have been previously suggested. Our goal was to evaluate the invasion capability of a Salmonella Typhimurium strain invalidated for the three known invasion factors. Non-phagocytic cell lines of several animal origins were tested in a gentamicin protection assay. In most cells, we observed a drastic decrease in the invasion rate between the wild-type and the triple mutant. However, in five cell lines, the triple mutant invaded cells at a similarly high level to the wild-type, suggesting the existence of unidentified invasion factors. For the wild-type and the triple mutant, scanning-electron microscopy, confocal imaging and use of biochemical inhibitors confirmed their cellular uptake and showed a zipper-like mechanism of internalization involving both clathrin- and non-clathrin-dependent pathways. Despite a functional T3SS-1, the wild-type bacteria seemed to use the same entry route as the mutant in our cell model. All together, these results demonstrate the existence of unknown Salmonella invasion factors, which require further characterization.


Assuntos
Endocitose , Salmonelose Animal/microbiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Humanos , Modelos Biológicos , Salmonella typhimurium/genética , Fatores de Virulência/deficiência
15.
Sci Rep ; 8(1): 17426, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467366

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

16.
Sci Rep ; 8(1): 16283, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389967

RESUMO

Monitoring virus assembly at the nanoscale in host cells remains a major challenge. Human immunodeficiency virus type 1 (HIV-1) components are addressed to the plasma membrane where they assemble to form spherical particles of 100 nm in diameter. Interestingly, HIV-1 Gag protein expression alone is sufficient to produce virus-like particles (VLPs) that resemble the immature virus. Here, we monitored VLP formation at the plasma membrane of host CD4+ T cells using a newly developed workflow allowing the analysis of long duration recordings of single-molecule Gag protein localisation and movement. Comparison of Gag assembling platforms in CD4+ T cells expressing wild type or assembly-defective Gag mutant proteins showed that VLP formation lasts roughly 15 minutes with an assembly time of 5 minutes. Trapping energy maps, built from membrane associated Gag protein movements, showed that one third of the assembling energy is due to direct Gag capsid-capsid interaction while the remaining two thirds require the nucleocapsid-RNA interactions. Finally, we show that the viral RNA genome does not increase the attraction of Gag at the membrane towards the assembling site but rather acts as a spatiotemporal coordinator of the membrane assembly process.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Membrana Celular/metabolismo , HIV-1/fisiologia , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/virologia , Humanos , Microscopia Intravital/métodos , Células Jurkat , Microscopia de Fluorescência/métodos , Mutagênese Sítio-Dirigida , Mutação , RNA Viral/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imagem Individual de Molécula/métodos , Transfecção , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
17.
PLoS One ; 12(4): e0176355, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28441462

RESUMO

Avian Influenza virus (AIV) is a major concern for the global poultry industry. Since 2012, several countries have reported AIV outbreaks among domestic poultry. These outbreaks had tremendous impact on poultry production and socio-economic repercussion on farmers. In addition, the constant emergence of highly pathogenic AIV also poses a significant risk to human health. In this study, we used a chicken lung epithelial cell line (CLEC213) to gain a better understanding of the molecular consequences of low pathogenic AIV infection in their natural host. Using a transcriptome profiling approach based on microarrays, we identified a cluster of mitochondrial genes highly induced during the infection. Interestingly, most of the regulated genes are encoded by the mitochondrial genome and are involved in the oxidative phosphorylation metabolic pathway. The biological consequences of this transcriptomic induction result in a 2.5- to 4-fold increase of the ATP concentration within the infected cells. PB1-F2, a viral protein that targets the mitochondria was not found associated to the boost of activity of the respiratory chain. We next explored the possibility that ATP may act as a host-derived danger signal (through production of extracellular ATP) or as a boost to increase AIV replication. We observed that, despite the activation of the P2X7 purinergic receptor pathway, a 1mM ATP addition in the cell culture medium had no effect on the virus replication in our epithelial cell model. Finally, we found that oligomycin, a drug that inhibits the oxidative phosphorylation process, drastically reduced the AIV replication in CLEC213 cells, without apparent cellular toxicity. Collectively, our results suggest that AIV is able to boost the metabolic capacities of its avian host in order to provide the important energy needs required to produce progeny virus.


Assuntos
Transporte de Elétrons/genética , Células Epiteliais/virologia , Influenza Aviária/metabolismo , Pulmão/virologia , Mitocôndrias/metabolismo , Animais , Linhagem Celular , Galinhas , Transporte de Elétrons/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Vírus da Influenza A , Influenza Aviária/virologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Mitocôndrias/genética , Oligomicinas/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Transcriptoma , Replicação Viral/efeitos dos fármacos
18.
PLoS One ; 9(3): e93573, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24681578

RESUMO

The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.


Assuntos
Vírus da Dengue/metabolismo , Vesículas Secretórias/metabolismo , Vesículas Secretórias/virologia , Animais , Células Cultivadas , Chlorocebus aethiops , Citoplasma/metabolismo , Citoplasma/virologia , Exocitose/fisiologia , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Células Vero
19.
Plant Methods ; 8(1): 16, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22571391

RESUMO

BACKGROUND: Seed transmission constitutes a major component of the parasitic cycle for several fungal pathogens. However, very little is known concerning fungal or plant genetic factors that impact seed transmission and mechanisms underlying this key biological trait have yet to be clarified. Such lack of available data could be probably explained by the absence of suitable model pathosystem to study plant-fungus interactions during the plant reproductive phase. RESULTS: Here we report on setting up a new pathosystem that could facilitate the study of fungal seed transmission. Reproductive organs of Arabidopsis thaliana were inoculated with Alternaria brassicicola conidia. Parameters (floral vs fruit route, seed collection date, plant and silique developmental stages) that could influence the seed transmission efficiency were tested to define optimal seed infection conditions. Microscopic observations revealed that the fungus penetrates siliques through cellular junctions, replum and stomata, and into seed coats either directly or through cracks. The ability of the osmosensitive fungal mutant nik1Δ3 to transmit to A. thaliana seeds was analyzed. A significant decrease in seed transmission rate was observed compared to the wild-type parental strain, confirming that a functional osmoregulation pathway is required for efficient seed transmission of the fungus. Similarly, to test the role of flavonoids in seed coat protection against pathogens, a transparent testa Arabidopsis mutant (tt4-1) not producing any flavonoid was used as host plant. Unexpectedly, tt4-1 seeds were infected to a significantly lower extent than wild-type seeds, possibly due to over-accumulation of other antimicrobial metabolites. CONCLUSIONS: The Arabidopsis thaliana-Alternaria brassicicola pathosystem, that have been widely used to study plant-pathogen interactions during the vegetative phase, also proved to constitute a suitable model pathosystem for detailed analysis of plant-pathogen interactions during the reproductive phase. We demonstrated that it provides an excellent system for investigating the impact of different fungal or plant mutations on the seed transmission process and therefore paves the way towards future high-throughput screening of both Arabidopsis and fungal mutant.

20.
Biomed Mater ; 4(1): 015012, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19075364

RESUMO

Bone autograft remains a very useful and popular way for filling bone defects. In maxillofacial surgery or implantology, it is used to increase the volume of the maxilla or mandible before placing dental implants. Because there is a noticeable delay between harvesting the graft and its insertion in the receiver site, we evaluated the morphologic changes at the light and transmission electron microscopy levels. Five patients having an autograft (bone harvested from the chin) were enrolled in the study. A small fragment of the graft was immediately fixed after harvesting and a second one was similarly processed at the end of the grafting period when bone has been stored at room temperature for a 20 min +/- 33 s period in saline. A net increase in the number of osteocyte lacunae filled with cellular debris was observed (+41.5%). However no cytologic alteration could be observed in the remaining osteocytes. The viability of these cells is known to contribute to the success of autograft in association with other less well-identified factors.


Assuntos
Transplante Ósseo/métodos , Implantes Dentários , Mandíbula/anatomia & histologia , Mandíbula/fisiologia , Osteócitos/citologia , Osteócitos/fisiologia , Coleta de Tecidos e Órgãos/métodos , Contagem de Células , Sobrevivência Celular , Células Cultivadas , Sobrevivência de Enxerto/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA