RESUMO
As investigations in the biomedical applications of plasma advance, a demand for describing safe and efficacious delivery of plasma is emerging. It is quite clear that not all plasmas are "equal" for all applications. This Perspective discusses limitations of the existing parameters used to define plasma in context of the need for the "right plasma" at the "right dose" for each "disease system." The validity of results extrapolated from in vitro studies to preclinical and clinical applications is discussed. We make a case for studying the whole system as a single unit, in situ. Furthermore, we argue that while plasma-generated chemical species are the proposed key effectors in biological systems, the contribution of physical effectors (electric fields, surface charging, dielectric properties of target, changes in gap electric fields, etc.) must not be ignored.
RESUMO
There is an urgent need for disinfection and sterilization devices accessible to the public that can be fulfilled by innovative strategies for using cold atmospheric pressure plasmas. Here, we demonstrate a successful novel combination of a flexible printed circuit design of a dielectric barrier discharge (flex-DBD) with an environmentally safe chemical reagent for surface decontamination from bacterial contaminants. Flex-DBD operates in ambient air, atmospheric pressure, and room temperature without any additional gas flow at a power density not exceeding 0.5 W/cm2. The flex-DBD activation of a 3% hydrogen peroxide solution results in the reduction in the bacterial load of a surface contaminant of > 6log10 in 90 s, about 3log10 and 2log10 better than hydrogen peroxide alone or the flex-DBD alone, respectively, for the same treatment time. We propose that the synergy between plasma and hydrogen peroxide is based on the combined action of plasma-generated OH· radicals in the hydrogen peroxide solution and the reactive nitrogen species supplied by the plasma effluent. A scavenger method verified a significant increase in OH· concentration due to plasma treatment. Novel in-situ FTIR absorption spectra show the presence of O3, NO2, N2O, and other nitrogen species. Ozone dissolving in the H2O2 solution can effectively generate OH· through a peroxone process. The addition of the reactive nitrogen species increases the disinfection efficiency of the hydroxyl radicals and other oxygen species. Hence, plasma activation of a low concentration hydrogen peroxide solution, using a hand-held flexible DBD device results in a dramatic improvement in disinfection.