Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 18(17): 17620-30, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20721148

RESUMO

The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.


Assuntos
Elétrons , Lasers , Síncrotrons , Desenho de Equipamento , Fibras Ópticas , Fatores de Tempo , Raios X
2.
Phys Rev Lett ; 105(8): 083005, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20868097

RESUMO

We investigate the creation of double K-shell holes in N2 molecules via sequential absorption of two photons on a time scale shorter than the core-hole lifetime by using intense x-ray pulses from the Linac Coherent Light Source free electron laser. The production and decay of these states is characterized by photoelectron spectroscopy and Auger electron spectroscopy. In molecules, two types of double core holes are expected, the first with two core holes on the same N atom, and the second with one core hole on each N atom. We report the first direct observations of the former type of core hole in a molecule, in good agreement with theory, and provide an experimental upper bound for the relative contribution of the latter type.


Assuntos
Elétrons , Nitrogênio , Fenômenos Físicos , Lasers , Espectroscopia Fotoeletrônica , Teoria Quântica , Síncrotrons , Raios X
3.
Phys Rev Lett ; 104(25): 253002, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20867372

RESUMO

Sequential multiple photoionization of the prototypical molecule N2 is studied with femtosecond time resolution using the Linac Coherent Light Source (LCLS). A detailed picture of intense x-ray induced ionization and dissociation dynamics is revealed, including a molecular mechanism of frustrated absorption that suppresses the formation of high charge states at short pulse durations. The inverse scaling of the average target charge state with x-ray peak brightness has possible implications for single-pulse imaging applications.

4.
Phys Rev Lett ; 105(8): 083004, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20868096

RESUMO

The Linac Coherent Light Source free electron laser is a source of high brightness x rays, 2×10(11) photons in a ∼5 fs pulse, that can be focused to produce double core vacancies through rapid sequential ionization. This enables double core vacancy Auger electron spectroscopy, an entirely new way to study femtosecond chemical dynamics with Auger electrons that probe the local valence structure of molecules near a specific atomic core. Using 1.1 keV photons for sequential x-ray ionization of impulsively aligned molecular nitrogen, we observed a rich single-site double core vacancy Auger electron spectrum near 413 eV, in good agreement with ab initio calculations, and we measured the corresponding Auger electron angle dependence in the molecular frame.


Assuntos
Elétrons , Fenômenos Físicos , Luz , Nitrogênio/química , Teoria Quântica , Análise Espectral , Fatores de Tempo
5.
Nat Commun ; 11(1): 112, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913265

RESUMO

The relaxation of photoexcited nanosystems is a fundamental process of light-matter interaction. Depending on the couplings of the internal degrees of freedom, relaxation can be ultrafast, converting electronic energy in a few fs, or slow, if the energy is trapped in a metastable state that decouples from its environment. Here, we study helium nanodroplets excited resonantly by femtosecond extreme-ultraviolet (XUV) pulses from a seeded free-electron laser. Despite their superfluid nature, we find that helium nanodroplets in the lowest electronically excited states undergo ultrafast relaxation. By comparing experimental photoelectron spectra with time-dependent density functional theory simulations, we unravel the full relaxation pathway: Following an ultrafast interband transition, a void nanometer-sized bubble forms around the localized excitation (He[Formula: see text]) within 1 ps. Subsequently, the bubble collapses and releases metastable He[Formula: see text] at the droplet surface. This study highlights the high level of detail achievable in probing the photodynamics of nanosystems using tunable XUV pulses.

6.
Science ; 311(5758): 219-22, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16357226

RESUMO

The coupled electronic and vibrational motions governing chemical processes are best viewed from the molecule's point of view-the molecular frame. Measurements made in the laboratory frame often conceal information because of the random orientations the molecule can take. We used a combination of time-resolved photoelectron spectroscopy, multidimensional coincidence imaging spectroscopy, and ab initio computation to trace a complete reactant-to-product pathway-the photodissociation of the nitric oxide dimer-from the molecule's point of view, on the femtosecond time scale. This method revealed an elusive photochemical process involving intermediate electronic configurations.

7.
Phys Rev Lett ; 88(19): 193002, 2002 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-12005630

RESUMO

A complete description of the 4sigma photoionization dynamics of NO has been derived from angle resolved photoelectron-photoion-coincidence experiments. The combination of measurements performed with linearly and circularly polarized light has made it possible to obtain a unique set of complex dipole matrix elements. A comparison with multichannel-Schwinger-configuration-interaction calculations shows good agreement in the general shapes of the angular distributions due to the correct description of the main components and phase differences. Still, many transition moments agree only qualitatively.

8.
Faraday Discuss ; 127: 193-212, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15471347

RESUMO

Time-resolved photoelectron spectroscopy (TRPES) is emerging as a useful tool for the study of non-adiabatic dynamics in isolated polyatomic molecules and clusters due to its sensitivity to both electronic and vibrational dynamics. A powerful extension of TRPES, coincidence imaging spectroscopy (CIS), based upon femtosecond time-resolved 3D momentum vector imaging of both photoions and photoelectrons in coincidence, is a new technique for the study of complex dissociative processes. Here we show how these spectroscopies can be used to study both non-adiabatic intramolecular and photodissociation dynamics in polyatomic molecules. Intramolecular dynamics in the alpha, beta-enones acrolein, crotonaldehyde and methyl vinyl ketone are studied using both TRPES and laser-induced fluorescence of HCO(X) product yields. The location of the methyl group is seen to have very dramatic effects on the relative electronic relaxation rates and the HCO(X) yield. Applying both TRPES and CIS to the 200 nm and 209 nm photodissociation of the nitric oxide dimer, (NO)2, we observe the fs time-scale evolution of the excited parent neutral via its photoelectron spectrum and the emergence of the NO(A) photofragment including its energy and angular distributions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA