Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Water Res ; 212: 118070, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101695

RESUMO

Wastewater surveillance has emerged as a useful tool in the public health response to the COVID-19 pandemic. While wastewater surveillance has been applied at various scales to monitor population-level COVID-19 dynamics, there is a need for quantitative metrics to interpret wastewater data in the context of public health trends. 24-hour composite wastewater samples were collected from March 2020 through May 2021 from a Massachusetts wastewater treatment plant and SARS-CoV-2 RNA concentrations were measured using RT-qPCR. The relationship between wastewater copy numbers of SARS-CoV-2 gene fragments and COVID-19 clinical cases and deaths varies over time. We demonstrate the utility of three new metrics to monitor changes in COVID-19 epidemiology: (1) the ratio between wastewater copy numbers of SARS-CoV-2 gene fragments and clinical cases (WC ratio), (2) the time lag between wastewater and clinical reporting, and (3) a transfer function between the wastewater and clinical case curves. The WC ratio increases after key events, providing insight into the balance between disease spread and public health response. Time lag and transfer function analysis showed that wastewater data preceded clinically reported cases in the first wave of the pandemic but did not serve as a leading indicator in the second wave, likely due to increased testing capacity, which allows for more timely case detection and reporting. These three metrics could help further integrate wastewater surveillance into the public health response to the COVID-19 pandemic and future pandemics.


Assuntos
COVID-19 , Pandemias , Benchmarking , Humanos , RNA Viral , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
2.
ACS ES T Water ; 2(11): 1899-1909, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36380771

RESUMO

Wastewater-based epidemiology has emerged as a promising technology for population-level surveillance of COVID-19. In this study, we present results of a large nationwide SARS-CoV-2 wastewater monitoring system in the United States. We profile 55 locations with at least six months of sampling from April 2020 to May 2021. These locations represent more than 12 million individuals across 19 states. Samples were collected approximately weekly by wastewater treatment utilities as part of a regular wastewater surveillance service and analyzed for SARS-CoV-2 RNA concentrations. SARS-CoV-2 RNA concentrations were normalized to pepper mild mottle virus, an indicator of fecal matter in wastewater. We show that wastewater data reflect temporal and geographic trends in clinical COVID-19 cases and investigate the impact of normalization on correlations with case data within and across locations. We also provide key lessons learned from our broad-scale implementation of wastewater-based epidemiology, which can be used to inform wastewater-based epidemiology approaches for future emerging diseases. This work demonstrates that wastewater surveillance is a feasible approach for nationwide population-level monitoring of COVID-19 disease. With an evolving epidemic and effective vaccines against SARS-CoV-2, wastewater-based epidemiology can serve as a passive surveillance approach for detecting changing dynamics or resurgences of the virus.

3.
Sci Total Environ ; 805: 150121, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34534872

RESUMO

Current estimates of COVID-19 prevalence are largely based on symptomatic, clinically diagnosed cases. The existence of a large number of undiagnosed infections hampers population-wide investigation of viral circulation. Here, we quantify the SARS-CoV-2 concentration and track its dynamics in wastewater at a major urban wastewater treatment facility in Massachusetts, between early January and May 2020. SARS-CoV-2 was first detected in wastewater on March 3. SARS-CoV-2 RNA concentrations in wastewater correlated with clinically diagnosed new COVID-19 cases, with the trends appearing 4-10 days earlier in wastewater than in clinical data. We inferred viral shedding dynamics by modeling wastewater viral load as a convolution of back-dated new clinical cases with the average population-level viral shedding function. The inferred viral shedding function showed an early peak, likely before symptom onset and clinical diagnosis, consistent with emerging clinical and experimental evidence. This finding suggests that SARS-CoV-2 concentrations in wastewater may be primarily driven by viral shedding early in infection. This work shows that longitudinal wastewater analysis can be used to identify trends in disease transmission in advance of clinical case reporting, and infer early viral shedding dynamics for newly infected individuals, which are difficult to capture in clinical investigations.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral , Eliminação de Partículas Virais , Águas Residuárias
4.
Genome Biol ; 23(1): 236, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348471

RESUMO

Effectively monitoring the spread of SARS-CoV-2 mutants is essential to efforts to counter the ongoing pandemic. Predicting lineage abundance from wastewater, however, is technically challenging. We show that by sequencing SARS-CoV-2 RNA in wastewater and applying algorithms initially used for transcriptome quantification, we can estimate lineage abundance in wastewater samples. We find high variability in signal among individual samples, but the overall trends match those observed from sequencing clinical samples. Thus, while clinical sequencing remains a more sensitive technique for population surveillance, wastewater sequencing can be used to monitor trends in mutant prevalence in situations where clinical sequencing is unavailable.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Águas Residuárias , RNA Viral/genética , Transcriptoma
5.
J Med Toxicol ; 17(4): 397-410, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34402038

RESUMO

During the current global COVID-19 pandemic and opioid epidemic, wastewater-based epidemiology (WBE) has emerged as a powerful tool for monitoring public health trends by analysis of biomarkers including drugs, chemicals, and pathogens. Wastewater surveillance downstream at wastewater treatment plants provides large-scale population and regional-scale aggregation while upstream surveillance monitors locations at the neighborhood level with more precise geographic analysis. WBE can provide insights into dynamic drug consumption trends as well as environmental and toxicological contaminants. Applications of WBE include monitoring policy changes with cannabinoid legalization, tracking emerging illicit drugs, and early warning systems for potent fentanyl analogues along with the resurging wave of stimulants (e.g., methamphetamine, cocaine). Beyond drug consumption, WBE can also be used to monitor pharmaceuticals and their metabolites, including antidepressants and antipsychotics. In this manuscript, we describe the basic tenets and techniques of WBE, review its current application among drugs of abuse, and propose methods to scale and develop both monitoring and early warning systems with respect to measurement of illicit drugs and pharmaceuticals. We propose new frontiers in toxicological research with wastewater surveillance including assessment of medication assisted treatment of opioid use disorder (e.g., buprenorphine, methadone) in the context of other social burdens like COVID-19 disease.


Assuntos
Biomarcadores/análise , Drogas Ilícitas/análise , Preparações Farmacêuticas/análise , Detecção do Abuso de Substâncias/métodos , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias/química , Poluentes Químicos da Água/análise , COVID-19/epidemiologia , Humanos , Pandemias , SARS-CoV-2 , Transtornos Relacionados ao Uso de Substâncias/epidemiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-34927170

RESUMO

Accurate estimates of COVID-19 burden of infections in communities can inform public health strategy for the current pandemic. Wastewater based epidemiology (WBE) leverages sewer infrastructure to provide insights on rates of infection by measuring viral concentrations in wastewater. By accessing the sewer network at various junctures, important insights regarding COVID-19 disease activity can be gained. The analysis of sewage at the wastewater treatment plant level enables population-level surveillance of disease trends and virus mutations. At the neighborhood level, WBE can be used to describe trends in infection rates in the community thereby facilitating local efforts at targeted disease mitigation. Finally, at the building level, WBE can suggest the presence of infections and prompt individual testing. In this critical review, we describe the types of data that can be obtained through varying levels of WBE analysis, concrete plans for implementation, and public health actions that can be taken based on WBE surveillance data of infectious diseases, using recent and successful applications of WBE during the COVID-19 pandemic for illustration.

7.
medRxiv ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34159339

RESUMO

Wastewater surveillance has emerged as a useful tool in the public health response to the COVID-19 pandemic. While wastewater surveillance has been applied at various scales to monitor population-level COVID-19 dynamics, there is a need for quantitative metrics to interpret wastewater data in the context of public health trends. We collected 24-hour composite wastewater samples from March 2020 through May 2021 from a Massachusetts wastewater treatment plant and measured SARS-CoV-2 RNA concentrations using RT-qPCR. We show that the relationship between wastewater viral titers and COVID-19 clinical cases and deaths varies over time. We demonstrate the utility of three new metrics to monitor changes in COVID-19 epidemiology: (1) the ratio between wastewater viral titers and clinical cases (WC ratio), (2) the time lag between wastewater and clinical reporting, and (3) a transfer function between the wastewater and clinical case curves. We find that the WC ratio increases after key events, providing insight into the balance between disease spread and public health response. We also find that wastewater data preceded clinically reported cases in the first wave of the pandemic but did not serve as a leading indicator in the second wave, likely due to increased testing capacity. These three metrics could complement a framework for integrating wastewater surveillance into the public health response to the COVID-19 pandemic and future pandemics.

8.
medRxiv ; 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33758888

RESUMO

Wastewater-based disease surveillance is a promising approach for monitoring community outbreaks. Here we describe a nationwide campaign to monitor SARS-CoV-2 in the wastewater of 159 counties in 40 U.S. states, covering 13% of the U.S. population from February 18 to June 2, 2020. Out of 1,751 total samples analyzed, 846 samples were positive for SARS-CoV-2 RNA, with overall viral concentrations declining from April to May. Wastewater viral titers were consistent with, and appeared to precede, clinical COVID-19 surveillance indicators, including daily new cases. Wastewater surveillance had a high detection rate (>80%) of SARS-CoV-2 when the daily incidence exceeded 13 per 100,000 people. Detection rates were positively associated with wastewater treatment plant catchment size. To our knowledge, this work represents the largest-scale wastewater-based SARS-CoV-2 monitoring campaign to date, encompassing a wide diversity of wastewater treatment facilities and geographic locations. Our findings demonstrate that a national wastewater-based approach to disease surveillance may be feasible and effective.

9.
Water Res ; 202: 117400, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274898

RESUMO

Wastewater-based disease surveillance is a promising approach for monitoring community outbreaks. Here we describe a nationwide campaign to monitor SARS-CoV-2 in the wastewater of 159 counties in 40 U.S. states, covering 13% of the U.S. population from February 18 to June 2, 2020. Out of 1,751 total samples analyzed, 846 samples were positive for SARS-CoV-2 RNA, with overall viral concentrations declining from April to May. Wastewater viral titers were consistent with, and appeared to precede, clinical COVID-19 surveillance indicators, including daily new cases. Wastewater surveillance had a high detection rate (>80%) of SARS-CoV-2 when the daily incidence exceeded 13 per 100,000 people. Detection rates were positively associated with wastewater treatment plant catchment size. To our knowledge, this work represents the largest-scale wastewater-based SARS-CoV-2 monitoring campaign to date, encompassing a wide diversity of wastewater treatment facilities and geographic locations. Our findings demonstrate that a national wastewater-based approach to disease surveillance may be feasible and effective.


Assuntos
COVID-19 , SARS-CoV-2 , Surtos de Doenças , Humanos , RNA Viral , Águas Residuárias
10.
medRxiv ; 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34494031

RESUMO

Effectively monitoring the spread of SARS-CoV-2 variants is essential to efforts to counter the ongoing pandemic. Wastewater monitoring of SARS-CoV-2 RNA has proven an effective and efficient technique to approximate COVID-19 case rates in the population. Predicting variant abundances from wastewater, however, is technically challenging. Here we show that by sequencing SARS-CoV-2 RNA in wastewater and applying computational techniques initially used for RNA-Seq quantification, we can estimate the abundance of variants in wastewater samples. We show by sequencing samples from wastewater and clinical isolates in Connecticut U.S.A. between January and April 2021 that the temporal dynamics of variant strains broadly correspond. We further show that this technique can be used with other wastewater sequencing techniques by expanding to samples taken across the United States in a similar timeframe. We find high variability in signal among individual samples, and limited ability to detect the presence of variants with clinical frequencies <10%; nevertheless, the overall trends match what we observed from sequencing clinical samples. Thus, while clinical sequencing remains a more sensitive technique for population surveillance, wastewater sequencing can be used to monitor trends in variant prevalence in situations where clinical sequencing is unavailable or impractical.

11.
J Med Toxicol ; 16(2): 195-203, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31919800

RESUMO

INTRODUCTION: Accurate data regarding opioid use, overdose, and treatment is important in guiding community efforts at combating the opioid epidemic. Wastewater-based epidemiology (WBE) is a potential method to quantify community-level trends of opioid exposure beyond overdose data, which is the basis of most existing response efforts. However, most WBE efforts collect parent opioid compounds (e.g., morphine) at wastewater treatment facilities, measuring opioid concentrations across large catchment zones which typically represent an entire municipality. We sought to deploy a robotic sampling device at targeted manholes within a city to semi-quantitatively detect opioid metabolites (e.g., morphine glucuronide) at a sub-city community resolution. METHODS: We deployed a robotic wastewater sampling platform at ten residential manholes in an urban municipality in North Carolina, accounting for 44.5% of the total municipal population. Sampling devices comprised a robotic sampling arm with in situ solid phase extraction, and collected hourly samples over 24-hour periods. We used targeted mass spectrometry to detect the presence of a custom panel of opioids, naloxone, and buprenorphine. RESULTS: Ten sampling sites were selected to be a representative survey of the entire municipality by integrating sewer network and demographic GIS data. All eleven metabolites targeted were detected during the program. The average morphine milligram equivalent (MME) across the nine illicit and prescription opioids, as excreted and detected in wastewater, was 49.1 (standard deviation of 31.9) MME/day/1000-people. Codeine was detected most frequently (detection rate of 100%), and buprenorphine was detected least frequently (12%). The presence of naloxone correlated with city data of known overdoses reversed by emergency medical services in the prehospital setting. CONCLUSION: Wastewater-based epidemiology with smart sewer selection and robotic wastewater collection is feasible to detect the presence of specific opioids, naloxone, methadone, and buprenorphine within a city. These results suggest that wastewater epidemiology could be used to detect patterns of opioid exposure and may ultimately provide information for opioid use disorder (OUD) treatment and harm reduction programs.


Assuntos
Analgésicos Opioides/análise , Monitoramento Ambiental , Epidemia de Opioides , Transtornos Relacionados ao Uso de Opioides/epidemiologia , Robótica , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Adulto , Monitoramento Ambiental/instrumentação , Estudos de Viabilidade , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Naloxona/análise , Antagonistas de Entorpecentes/análise , North Carolina , Transtornos Relacionados ao Uso de Opioides/diagnóstico , Transtornos Relacionados ao Uso de Opioides/terapia , Robótica/instrumentação , Extração em Fase Sólida , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Transtornos Relacionados ao Uso de Substâncias/terapia , Saúde da População Urbana
12.
mSystems ; 5(4)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694130

RESUMO

Wastewater surveillance represents a complementary approach to clinical surveillance to measure the presence and prevalence of emerging infectious diseases like the novel coronavirus SARS-CoV-2. This innovative data source can improve the precision of epidemiological modeling to understand the penetrance of SARS-CoV-2 in specific vulnerable communities. Here, we tested wastewater collected at a major urban treatment facility in Massachusetts and detected SARS-CoV-2 RNA from the N gene at significant titers (57 to 303 copies per ml of sewage) in the period from 18 to 25 March 2020 using RT-qPCR. We validated detection of SARS-CoV-2 by Sanger sequencing the PCR product from the S gene. Viral titers observed were significantly higher than expected based on clinically confirmed cases in Massachusetts as of 25 March. Our approach is scalable and may be useful in modeling the SARS-CoV-2 pandemic and future outbreaks.IMPORTANCE Wastewater-based surveillance is a promising approach for proactive outbreak monitoring. SARS-CoV-2 is shed in stool early in the clinical course and infects a large asymptomatic population, making it an ideal target for wastewater-based monitoring. In this study, we develop a laboratory protocol to quantify viral titers in raw sewage via qPCR analysis and validate results with sequencing analysis. Our results suggest that the number of positive cases estimated from wastewater viral titers is orders of magnitude greater than the number of confirmed clinical cases and therefore may significantly impact efforts to understand the case fatality rate and progression of disease. These data may help inform decisions surrounding the advancement or scale-back of social distancing and quarantine efforts based on dynamic wastewater catchment-level estimations of prevalence.

13.
medRxiv ; 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32607521

RESUMO

Current estimates of COVID-19 prevalence are largely based on symptomatic, clinically diagnosed cases. The existence of a large number of undiagnosed infections hampers population-wide investigation of viral circulation. Here, we use longitudinal wastewater analysis to track SARS-CoV-2 dynamics in wastewater at a major urban wastewater treatment facility in Massachusetts, between early January and May 2020. SARS-CoV-2 was first detected in wastewater on March 3. Viral titers in wastewater increased exponentially from mid-March to mid-April, after which they began to decline. Viral titers in wastewater correlated with clinically diagnosed new COVID-19 cases, with the trends appearing 4-10 days earlier in wastewater than in clinical data. We inferred viral shedding dynamics by modeling wastewater viral titers as a convolution of back-dated new clinical cases with the viral shedding function of an individual. The inferred viral shedding function showed an early peak, likely before symptom onset and clinical diagnosis, consistent with emerging clinical and experimental evidence. Finally, we found that wastewater viral titers at the neighborhood level correlate better with demographic variables than with population size. This work suggests that longitudinal wastewater analysis can be used to identify trends in disease transmission in advance of clinical case reporting, and may shed light on infection characteristics that are difficult to capture in clinical investigations, such as early viral shedding dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA