Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Cell Proteomics ; 23(7): 100791, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797438

RESUMO

Within a cell, proteins have distinct and highly variable half-lives. As a result, the molecular ages of proteins can range from seconds to years. How the age of a protein influences its environmental interactions is a largely unexplored area of biology. To investigate the age-selectivity of cellular pathways, we developed a methodology termed "proteome birthdating" that barcodes proteins based on their time of synthesis. We demonstrate that this approach provides accurate measurements of protein turnover kinetics from a single biological sample encoding multiple labeling time-points. As a first application of the birthdated proteome, we investigated the age distribution of the human ubiquitinome. Our results indicate that the vast majority of ubiquitinated proteins in a cell consist of newly synthesized proteins and that these young proteins constitute the bulk of the degradative flux through the proteasome. Rapidly ubiquitinated nascent proteins are enriched in cytosolic subunits of large protein complexes. Conversely, proteins destined for the secretory pathway and vesicular transport have older ubiquitinated populations. Our data also identify a smaller subset of older ubiquitinated cellular proteins that do not appear to be targeted to the proteasome for rapid degradation. Together, our data provide an age census of the human ubiquitinome and establish proteome birthdating as a robust methodology for investigating the protein age-selectivity of diverse cellular pathways.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteoma , Proteínas Ubiquitinadas , Ubiquitinação , Humanos , Proteoma/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteômica/métodos , Proteólise , Ubiquitina/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(33): e2303167120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37552756

RESUMO

The folding of most proteins occurs during the course of their translation while their tRNA-bound C termini are embedded in the ribosome. How the close proximity of nascent proteins to the ribosome influences their folding thermodynamics remains poorly understood. Here, we have developed a mass spectrometry-based approach for determining the stabilities of nascent polypeptide chains using methionine oxidation as a folding probe. This approach enables quantitative measurement subglobal folding stabilities of ribosome nascent chains within complex protein mixtures and extracts. To validate the methodology, we analyzed the folding thermodynamics of three model proteins (dihydrofolate reductase, chemotaxis protein Y, and DNA polymerase IV) in soluble and ribosome-bound states. The data indicate that the ribosome can significantly alter the stability of nascent polypeptides. Ribosome-induced stability modulations were highly variable among different folding domains and were dependent on localized charge distributions within nascent polypeptides. The results implicated electrostatic interactions between the ribosome surface and nascent polypeptides as the cause of ribosome-induced stability modulations. The study establishes a robust proteomic methodology for analyzing localized stabilities within ribosome-bound nascent polypeptides and sheds light on how the ribosome influences the thermodynamics of protein folding.


Assuntos
Biossíntese de Proteínas , Proteômica , Ribossomos/metabolismo , Peptídeos/química , Dobramento de Proteína , Proteínas/metabolismo , Espectrometria de Massas
3.
Mol Syst Biol ; 19(4): e11393, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36929723

RESUMO

The lifespans of proteins range from minutes to years within mammalian tissues. Protein lifespan is relevant to organismal aging, as long-lived proteins accrue damage over time. It is unclear how protein lifetime is shaped by tissue context, where both cell turnover and proteolytic degradation contribute to protein turnover. We develop turnover and replication analysis by 15 N isotope labeling (TRAIL) to quantify protein and cell lifetimes with high precision and demonstrate that cell turnover, sequence-encoded features, and environmental factors modulate protein lifespan across tissues. Cell and protein turnover flux are comparable in proliferative tissues, while protein turnover outpaces cell turnover in slowly proliferative tissues. Physicochemical features such as hydrophobicity, charge, and disorder influence protein turnover in slowly proliferative tissues, but protein turnover is much less sequence-selective in highly proliferative tissues. Protein lifetimes vary nonrandomly across tissues after correcting for cell turnover. Multiprotein complexes such as the ribosome have consistent lifetimes across tissues, while mitochondria, peroxisomes, and lipid droplets have variable lifetimes. TRAIL can be used to explore how environment, aging, and disease affect tissue homeostasis.


Assuntos
Mitocôndrias , Proteínas , Animais , Marcação por Isótopo , Proteínas/metabolismo , Mitocôndrias/metabolismo , Envelhecimento , Proteômica , Mamíferos
4.
J Biol Chem ; 298(5): 101872, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35346688

RESUMO

The oxidation of protein-bound methionines to form methionine sulfoxides has a broad range of biological ramifications, making it important to delineate factors that influence methionine oxidation rates within a given protein. This is especially important for biopharmaceuticals, where oxidation can lead to deactivation and degradation. Previously, neighboring residue effects and solvent accessibility have been shown to impact the susceptibility of methionine residues to oxidation. In this study, we provide proteome-wide evidence that oxidation rates of buried methionine residues are also strongly influenced by the thermodynamic folding stability of proteins. We surveyed the Escherichia coli proteome using several proteomic methodologies and globally measured oxidation rates of methionine residues in the presence and absence of tertiary structure, as well as the folding stabilities of methionine-containing domains. These data indicated that buried methionines have a wide range of protection factors against oxidation that correlate strongly with folding stabilities. Consistent with this, we show that in comparison to E. coli, the proteome of the thermophile Thermus thermophilus is significantly more stable and thus more resistant to methionine oxidation. To demonstrate the utility of this correlation, we used native methionine oxidation rates to survey the folding stabilities of E. coli and T. thermophilus proteomes at various temperatures and propose a model that relates the temperature dependence of the folding stabilities of these two species to their optimal growth temperatures. Overall, these results indicate that oxidation rates of buried methionines from the native state of proteins can be used as a metric of folding stability.


Assuntos
Proteoma , Proteômica , Escherichia coli/genética , Escherichia coli/metabolismo , Metionina/metabolismo , Oxirredução , Dobramento de Proteína , Proteoma/metabolismo
5.
Mol Cell Proteomics ; 20: 100041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639418

RESUMO

Cells continually degrade and replace damaged proteins. However, the high energetic demand of protein turnover generates reactive oxygen species that compromise the long-term health of the proteome. Thus, the relationship between aging, protein turnover, and energetic demand remains unclear. Here, we used a proteomic approach to measure rates of protein turnover within primary fibroblasts isolated from a number of species with diverse life spans including the longest-lived mammal, the bowhead whale. We show that organismal life span is negatively correlated with turnover rates of highly abundant proteins. In comparison with mice, cells from long-lived naked mole rats have slower rates of protein turnover, lower levels of ATP production, and reduced reactive oxygen species levels. Despite having slower rates of protein turnover, naked mole rat cells tolerate protein misfolding stress more effectively than mouse cells. We suggest that in lieu of a rapid constitutive turnover, long-lived species may have evolved more energetically efficient mechanisms for selective detection and clearance of damaged proteins.


Assuntos
Proteoma , Aminoácidos , Animais , Humanos , Cinética , Luz , Longevidade , Preparações Farmacêuticas , Proteômica , Radioisótopos , Especificidade da Espécie
6.
Proc Natl Acad Sci U S A ; 117(46): 28727-28734, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33144500

RESUMO

A methionine-rich low complexity (LC) domain is found within a C-terminal region of the TDP43 RNA-binding protein. Self-association of this domain leads to the formation of labile cross-ß polymers and liquid-like droplets. Treatment with H2O2 caused phenomena of methionine oxidation and droplet melting that were reversed upon exposure of the oxidized protein to methionine sulfoxide reductase enzymes. Morphological features of the cross-ß polymers were revealed by H2O2-mediated footprinting. Equivalent TDP43 LC domain footprints were observed in polymerized hydrogels, liquid-like droplets, and living cells. The ability of H2O2 to impede cross-ß polymerization was abrogated by the prominent M337V amyotrophic lateral sclerosis-causing mutation. These observations may offer insight into the biological role of TDP43 in facilitating synapse-localized translation as well as aberrant aggregation of the protein in neurodegenerative diseases.


Assuntos
Ataxina-2/metabolismo , Proteínas de Ligação a DNA/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Células HEK293 , Humanos , Polimerização , Domínios Proteicos , Espécies Reativas de Oxigênio/metabolismo
7.
J Proteome Res ; 21(6): 1495-1509, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35584362

RESUMO

The oxidation of methionine has emerged as an important post-translational modification of proteins. A number of studies have suggested that the oxidation of methionines in select proteins can have diverse impacts on cell physiology, ranging from detrimental effects on protein stability to functional roles in cell signaling. Despite its importance, the large-scale investigation of methionine oxidation in a complex matrix, such as the cellular proteome, has been hampered by technical limitations. We report a methodology, methionine oxidation by blocking (MobB), that allows for accurate and precise quantification of low levels of methionine oxidation typically observed in vivo. To demonstrate the utility of this methodology, we analyzed the brain tissues of young (6 m.o.) and old (20 m.o.) mice and identified over 280 novel sites for in vivo methionine oxidation. We further demonstrated that oxidation stoichiometries for specific methionine residues are highly consistent between individual animals and methionine sulfoxides are enriched in clusters of functionally related gene products including membrane and extracellular proteins. However, we did not detect significant changes in methionine oxidation in brains of old mice. Our results suggest that under normal conditions, methionine oxidation may be a biologically regulated process rather than a result of stochastic chemical damage.


Assuntos
Metionina , Processamento de Proteína Pós-Traducional , Animais , Encéfalo/metabolismo , Metionina/metabolismo , Camundongos , Oxirredução , Proteoma/genética , Proteoma/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(13): 6081-6090, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30846556

RESUMO

The stability of proteins influences their tendency to aggregate, undergo degradation, or become modified in cells. Despite their significance to understanding protein folding and function, quantitative analyses of thermodynamic stabilities have been mostly limited to soluble proteins in purified systems. We have used a highly multiplexed proteomics approach, based on analyses of methionine oxidation rates, to quantify stabilities of ∼10,000 unique regions within ∼3,000 proteins in human cell extracts. The data identify lysosomal and extracellular proteins as the most stable ontological subsets of the proteome. We show that the stability of proteins impacts their tendency to become oxidized and is globally altered by the osmolyte trimethylamine N-oxide (TMAO). We also show that most proteins designated as intrinsically disordered retain their unfolded structure in the complex environment of the cell. Together, the data provide a census of the stability of the human proteome and validate a methodology for global quantitation of folding thermodynamics.


Assuntos
Metionina/metabolismo , Dobramento de Proteína , Estabilidade Proteica , Proteínas/química , Proteoma/metabolismo , Fibroblastos/metabolismo , Humanos , Espectrometria de Massas , Muramidase/metabolismo , Oxirredução , Conformação Proteica , Termodinâmica
9.
J Proteome Res ; 19(2): 624-633, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31801345

RESUMO

The oxidation of methionine is an important post-translational modification of proteins with numerous roles in physiology and pathology. However, the quantitative analysis of methionine oxidation on a proteome-wide scale has been hampered by technical limitations. Methionine is readily oxidized in vitro during sample preparation and analysis. In addition, there is a lack of enrichment protocols for peptides that contain an oxidized methionine residue, making the accurate quantification of methionine oxidation difficult to achieve on a global scale. Herein, we report a methodology to circumvent these issues by isotopically labeling unoxidized methionines with 18O-labeled hydrogen peroxide and quantifying the relative ratios of 18O- and 16O-oxidized methionines. We validate our methodology using artificially oxidized proteomes made to mimic varying degrees of methionine oxidation. Using this method, we identify and quantify a number of novel sites of in vivo methionine oxidation in an unstressed human cell line.


Assuntos
Metionina , Proteoma , Humanos , Metionina/metabolismo , Oxirredução , Peptídeos , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo
10.
Mol Cell Proteomics ; 17(4): 580-591, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29321186

RESUMO

The constitutive process of protein turnover plays a key role in maintaining cellular homeostasis. Recent technological advances in mass spectrometry have enabled the measurement of protein turnover kinetics across the proteome. However, it is not known if turnover kinetics of individual proteins are highly conserved or if they have evolved to meet the physiological demands of individual species. Here, we conducted systematic analyses of proteome turnover kinetics in primary dermal fibroblasts isolated from eight different rodent species. Our results highlighted two trends in the variability of proteome turnover kinetics across species. First, we observed a decrease in cross-species correlation of protein degradation rates as a function of evolutionary distance. Second, we observed a negative correlation between global protein turnover rates and maximum lifespan of the species. We propose that by reducing the energetic demands of continuous protein turnover, long-lived species may have evolved to lessen the generation of reactive oxygen species and the corresponding oxidative damage over their extended lifespans.


Assuntos
Fibroblastos/metabolismo , Proteólise , Proteoma , Roedores/metabolismo , Animais , Células Cultivadas , Cinética , Longevidade , Especificidade da Espécie
11.
Proc Natl Acad Sci U S A ; 114(48): E10329-E10338, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133406

RESUMO

In dividing cells, cytoplasmic dilution is the dominant route of clearance for long-lived proteins whose inherent degradation is slower than the cellular growth rate. Thus, as cells transition from a dividing to a nondividing state, there is a propensity for long-lived proteins to become stabilized relative to short-lived proteins, leading to alterations in the abundance distribution of the proteome. However, it is not known if cells mount a compensatory response to counter this potentially deleterious proteostatic disruption. We used a proteomic approach to demonstrate that fibroblasts selectively increase degradation rates of long-lived proteins as they transition from a proliferating to a quiescent state. The selective degradation of long-lived proteins occurs by the concurrent activation of lysosomal biogenesis and up-regulation of macroautophagy. Through this mechanism, quiescent cells avoid the accumulation of aged long-lived proteins that would otherwise result from the absence of cytoplasmic dilution by cell division.


Assuntos
Autofagia/genética , Fibroblastos/metabolismo , Homeostase/genética , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/metabolismo , Proteína 5 Relacionada à Autofagia/deficiência , Proteína 5 Relacionada à Autofagia/genética , Catepsinas/genética , Catepsinas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Cicloeximida/farmacologia , Citocinese/efeitos dos fármacos , Citocinese/genética , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica , Ontologia Genética , Meia-Vida , Humanos , Cinética , Anotação de Sequência Molecular , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Proteoma/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
12.
Mol Cell Proteomics ; 15(12): 3551-3563, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27765818

RESUMO

Recent advances in mass spectrometry have enabled system-wide analyses of protein turnover. By globally quantifying the kinetics of protein clearance and synthesis, these methodologies can provide important insights into the regulation of the proteome under varying cellular and environmental conditions. To facilitate such analyses, we have employed a methodology that combines metabolic isotopic labeling (Stable Isotope Labeling in Cell Culture - SILAC) with isobaric tagging (Tandem Mass Tags - TMT) for analysis of multiplexed samples. The fractional labeling of multiple time-points can be measured in a single mass spectrometry run, providing temporally resolved measurements of protein turnover kinetics. To demonstrate the feasibility of the approach, we simultaneously measured the kinetics of protein clearance and accumulation for more than 3000 proteins in dividing and quiescent human fibroblasts and verified the accuracy of the measurements by comparison to established non-multiplexed approaches. The results indicate that upon reaching quiescence, fibroblasts compensate for lack of cellular growth by globally downregulating protein synthesis and upregulating protein degradation. The described methodology significantly reduces the cost and complexity of temporally-resolved dynamic proteomic experiments and improves the precision of proteome-wide turnover data.


Assuntos
Técnicas de Cultura de Células/métodos , Fibroblastos/citologia , Marcação por Isótopo/métodos , Proteômica/métodos , Divisão Celular , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Cinética , Proteoma/análise , Espectrometria de Massas em Tandem
13.
Biochem J ; 474(16): 2829-2839, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28673962

RESUMO

2-Hydroxyglutarate (2-HG) is a hypoxic metabolite with potentially important epigenetic signaling roles. The mechanisms underlying 2-HG generation are poorly understood, but evidence suggests a potential regulatory role for the sirtuin family of lysine deacetylases. Thus, we hypothesized that the acetylation status of the major 2-HG-generating enzymes [lactate dehydrogenase (LDH), isocitrate dehydrogenase (IDH) and malate dehydrogenase (MDH)] may govern their 2-HG-generating activity. In vitro acetylation of these enzymes, with confirmation by western blotting, mass spectrometry, reversibility by recombinant sirtuins and an assay for global lysine occupancy, yielded no effect on 2-HG-generating activity. In addition, while elevated 2-HG in hypoxia is associated with the activation of lysine deacetylases, we found that mice lacking mitochondrial SIRT3 exhibited hyperacetylation and elevated 2-HG. These data suggest that there is no direct link between enzyme acetylation and 2-HG production. Furthermore, our observed effects of in vitro acetylation on the canonical activities of IDH, MDH and LDH appeared to contrast with previous findings wherein acetyl-mimetic lysine mutations resulted in the inhibition of these enzymes. Overall, these data suggest that a causal relationship should not be assumed between acetylation of metabolic enzymes and their activities, canonical or otherwise.


Assuntos
Glutaratos/metabolismo , Lisina/metabolismo , Mitocôndrias Cardíacas/enzimologia , Proteínas Mitocondriais/genética , Processamento de Proteína Pós-Traducional , Sirtuína 3/genética , Acetilação , Animais , Hipóxia Celular , Ensaios Enzimáticos , Células HEK293 , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Cinética , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/metabolismo , Transdução de Sinais , Sirtuína 3/deficiência
14.
J Proteome Res ; 15(2): 540-53, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26650791

RESUMO

Investigation of influenza-A-virus (IAV)-infected lung proteomes will greatly promote our understanding on the virus-host crosstalk. Using a detergent-cocktail extraction and digestion procedure and a reproducible ion-current-based method, we performed the first comprehensive temporal analysis of mouse IAV infection. Mouse lung tissues at three time points post-inoculation were compared with controls (n = 4/group), and >1600 proteins were quantified without missing value in any animal. Significantly changed proteins were identified at 4 days (n = 144), 7 days (n = 695), and 10 days (n = 396) after infection, with low false altered protein rates (1.73-8.39%). Functional annotation revealed several key biological processes involved in the systemic host responses. Intriguingly, decreased levels of several cell junction proteins as well as increased levels of tissue metalloproteinase MMP9 were observed, reflecting the IAV-induced structural breakdown of lung epithelial barrier. Supporting evidence of MMP9 activation came from immunoassays examining the abundance and phosphorylation states of all MAPKs and several relevant molecules. Importantly, IAV-induced MMP gelatinase expression was suggested to be specific to MMP9, and p38 MAPK may contribute predominantly to MMP9 elevation. These findings help to resolve the long-lasting debate regarding the signaling pathways of IAV-induced MMP9 expression and shed light on the molecular mechanisms underlying pulmonary capillary-alveolar leak syndrome that can occur during influenza infection.


Assuntos
Barreira Alveolocapilar/metabolismo , Pulmão/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Barreira Alveolocapilar/virologia , Western Blotting , Cromatografia de Fase Reversa , Vírus da Influenza A Subtipo H3N2/fisiologia , Modelos Lineares , Pulmão/irrigação sanguínea , Pulmão/virologia , Masculino , Espectrometria de Massas , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/virologia
15.
Anal Chem ; 86(22): 11334-41, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25301408

RESUMO

Recent advances in mass spectrometry have enabled proteome-wide analyses of cellular protein turnover. These studies have been greatly propelled by the development of stable isotope labeling in cell cultures (SILAC), a set of standardized protocols, reagents aimed at quantifying the incorporation of (15)N/(13)C labeled amino acids into proteins. In dynamic SILAC experiments, the degree of isotope incorporation in proteins is measured over time and used to determine turnover kinetics. However, the kinetics of isotope incorporation in proteins can potentially be influenced not only by their intracellular turnover but also by amino acid uptake, recycling and aminoacyl-tRNA synthesis. To assess the influence of these processes in dynamic SILAC experiments, we have measured the kinetics of isotopic enrichment within intracellular free amino acid and aminoacyl-tRNA precursor pools in dividing and division-arrested neuroblastoma cells following the introduction of extracellular (15)N labeled amino acids. We show that the total flux of extracellular amino acids into cells greatly exceeds that of intracellular amino acid recycling and synthesis. Furthermore, in comparison to internal sources, external amino acids are preferentially utilized as substrates for aminoacyl-tRNA precursors for protein synthesis. As a result, in dynamic SILAC experiments conducted in culture, the aminoacyl-tRNA precursor pool is near completely labeled in a few hours and protein turnover is the limiting factor in establishing the labeling kinetics of most proteins.


Assuntos
Aminoácidos/metabolismo , Marcação por Isótopo , Aminoácidos/química , Técnicas de Cultura de Células , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Cinética , Aminoacil-RNA de Transferência/biossíntese , Células Tumorais Cultivadas
16.
Am J Pathol ; 182(3): 866-74, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23438476

RESUMO

Prion diseases are neurodegenerative disorders characterized by the aberrant folding of endogenous proteins into self-propagating pathogenic conformers. Prion disease can be initiated in animal models by inoculation with amyloid fibrils formed from bacterially derived recombinant prion protein. The synthetic prions that accumulated in infected organisms are structurally distinct from the amyloid preparations used to initiate their formation and change conformationally on repeated passage. To investigate the nature of synthetic prion transformation, we infected mice with a conformationally diverse set of amyloids and serially passaged the resulting prion strains. At each passage, we monitored changes in the biochemical and biological properties of the adapting strain. The physicochemical properties of each synthetic prion strain gradually changed on serial propagation until attaining a common adapted state with shared physicochemical characteristics. These results indicate that synthetic prions can assume multiple intermediate conformations before converging into one conformation optimized for in vivo propagation.


Assuntos
Príons/metabolismo , Amiloide/metabolismo , Animais , Western Blotting , Células Cultivadas , Estimativa de Kaplan-Meier , Camundongos , Camundongos Transgênicos , Príons/química , Príons/patogenicidade , Conformação Proteica
17.
J Cell Biol ; 223(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37966721

RESUMO

LMNA mutations cause laminopathies that afflict the cardiovascular system and include Hutchinson-Gilford progeria syndrome. The origins of tissue specificity in these diseases are unclear as the lamin A/C proteins are broadly expressed. We show that LMNA transcript levels are not predictive of lamin A/C protein levels across tissues and use quantitative proteomics to discover that tissue context and disease mutation each influence lamin A/C protein's lifetime. Lamin A/C's lifetime is an order of magnitude longer in the aorta, heart, and fat, where laminopathy pathology is apparent, than in the liver and intestine, which are spared from the disease. Lamin A/C is especially insoluble in cardiovascular tissues, which may limit degradation and promote protein stability. Progerin is even more long lived than lamin A/C in the cardiovascular system and accumulates there over time. Progerin accumulation is associated with impaired turnover of hundreds of abundant proteins in progeroid tissues. These findings identify impaired lamin A/C protein turnover as a novel feature of laminopathy syndromes.


Assuntos
Lamina Tipo A , Progéria , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mutação , Progéria/genética , Progéria/patologia , Proteômica
18.
J Am Soc Mass Spectrom ; 35(3): 433-440, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38324783

RESUMO

Post-translational oxidation of methionine residues can destabilize proteins or modify their functions. Although levels of methionine oxidation can provide important information regarding the structural integrity and regulation of proteins, their quantitation is often challenging as analytical procedures in and of themselves can artifactually oxidize methionines. Here, we develop a mass-spectrometry-based method called Methionine Oxidation by Blocking with Alkylation (MObBa) that quantifies methionine oxidation by selectively alkylating and blocking unoxidized methionines. Thus, alkylated methionines can be used as a stable proxy for unoxidized methionines. Using proof of concept experiments, we demonstrate that MObBa can be used to measure methionine oxidation levels within individual synthetic peptides and on proteome-wide scales. MObBa may provide a straightforward experimental strategy for mass spectrometric quantitation of methionine oxidation.


Assuntos
Metionina , Racemetionina , Metionina/química , Oxirredução , Espectrometria de Massas/métodos , Racemetionina/metabolismo , Alquilação , Proteoma/química
19.
Bioorg Med Chem ; 21(24): 7999-8012, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24183589

RESUMO

During prion diseases, a normally benign, host protein, denoted PrP(C), undergoes alternative folding into the aberrant isoform, PrP(Sc). We used ELISA to identify and confirm hits in order to develop leads that reduce PrP(Sc) in prion-infected dividing and stationary-phase mouse neuroblastoma (ScN2a-cl3) cells. We tested 52,830 diverse small molecules in dividing cells and 49,430 in stationary-phase cells. This led to 3100 HTS and 970 single point confirmed (SPC) hits in dividing cells, 331 HTS and 55 confirmed SPC hits in stationary-phase cells as well as 36 confirmed SPC hits active in both. Fourteen chemical leads were identified from confirmed SPC hits in dividing cells and three in stationary-phase cells. From more than 682 compounds tested in concentration-effect relationships in dividing cells to determine potency (EC50), 102 had EC50 values between 1 and 10 µM and 50 had EC50 values of <1 µM; none affected cell viability. We observed an excellent correlation between EC50 values determined by ELISA and Western immunoblotting for 28 representative compounds in dividing cells (R(2)=0.75; p <0.0001). Of the 55 confirmed SPC hits in stationary-phase cells, 23 were piperazine, indole, or urea leads. The EC50 values of one indole in stationary-phase and dividing ScN2a-cl3 cells were 7.5 and 1.6 µM, respectively. Unexpectedly, the number of hits in stationary-phase cells was ~10% of that in dividing cells. The explanation for this difference remains to be determined.


Assuntos
Proteínas PrPSc/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Western Blotting , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Camundongos , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
20.
Mol Cell Proteomics ; 10(12): M111.010728, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21937731

RESUMO

In a recent study, in vivo metabolic labeling using (15)N traced the rate of label incorporation among more than 1700 proteins simultaneously and enabled the determination of individual protein turnover rate constants over a dynamic range of three orders of magnitude (Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., and Ghaemmaghami, S. (2010) Analysis of proteome dynamics in the mouse brain. Proc. Natl. Acad. Sci. U. S. A. 107, 14508-14513). These studies of protein dynamics provide a deeper understanding of healthy development and well-being of complex organisms, as well as the possible causes and progression of disease. In addition to a fully labeled food source and appropriate mass spectrometry platform, an essential and enabling component of such large scale investigations is a robust data processing and analysis pipeline, which is capable of the reduction of large sets of liquid chromatography tandem MS raw data files into the desired protein turnover rate constants. The data processing pipeline described in this contribution is comprised of a suite of software modules required for the workflow that fulfills such requirements. This software platform includes established software tools such as a mass spectrometry database search engine together with several additional, novel data processing modules specifically developed for (15)N metabolic labeling. These fulfill the following functions: (1) cross-extraction of (15)N-containing ion intensities from raw data files at varying biosynthetic incorporation times, (2) computation of peptide (15)N isotopic incorporation distributions, and (3) aggregation of relative isotope abundance curves for multiple peptides into single protein curves. In addition, processing parameter optimization and noise reduction procedures were found to be necessary in the processing modules in order to reduce propagation of errors in the long chain of the processing steps of the entire workflow.


Assuntos
Interpretação Estatística de Dados , Proteoma/metabolismo , Software , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Cromatografia Líquida , Marcação por Isótopo , Fígado/metabolismo , Camundongos , Peso Molecular , Fragmentos de Peptídeos/química , Estabilidade Proteica , Proteoma/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA