Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 516(7531): 405-9, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25317556

RESUMO

Naive embryonic stem cells hold great promise for research and therapeutics as they have broad and robust developmental potential. While such cells are readily derived from mouse blastocysts it has not been possible to isolate human equivalents easily, although human naive-like cells have been artificially generated (rather than extracted) by coercion of human primed embryonic stem cells by modifying culture conditions or through transgenic modification. Here we show that a sub-population within cultures of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) manifests key properties of naive state cells. These naive-like cells can be genetically tagged, and are associated with elevated transcription of HERVH, a primate-specific endogenous retrovirus. HERVH elements provide functional binding sites for a combination of naive pluripotency transcription factors, including LBP9, recently recognized as relevant to naivety in mice. LBP9-HERVH drives hESC-specific alternative and chimaeric transcripts, including pluripotency-modulating long non-coding RNAs. Disruption of LBP9, HERVH and HERVH-derived transcripts compromises self-renewal. These observations define HERVH expression as a hallmark of naive-like hESCs, and establish novel primate-specific transcriptional circuitry regulating pluripotency.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Retrovirus Endógenos/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Células Cultivadas , Elementos de DNA Transponíveis , Retrovirus Endógenos/genética , Perfilação da Expressão Gênica , Marcadores Genéticos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/virologia , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo
2.
PLoS Biol ; 13(12): e1002315, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26685068

RESUMO

X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution.


Assuntos
Cromossomos de Mamíferos , Regulação para Baixo , Regulação da Expressão Gênica , Genoma , Modelos Genéticos , Cromossomo X , Animais , Linhagem Celular Tumoral , Células Cultivadas , Cromossomos Humanos X , Bases de Dados Genéticas , Feminino , Genes Essenciais , Genoma Humano , Humanos , Masculino , Especificidade de Órgãos , Retroelementos , Caracteres Sexuais , Especificidade da Espécie
3.
Mol Biol Evol ; 32(7): 1748-66, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25743543

RESUMO

When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Genes , 5-Metilcitosina/análogos & derivados , Animais , Cerebelo/metabolismo , Cromossomos Humanos Par 2/genética , Simulação por Computador , Citosina/análogos & derivados , Feminino , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Metilação , Método de Monte Carlo , Especificidade de Órgãos/genética , Primatas/genética , Estatísticas não Paramétricas , Regulação para Cima/genética
4.
Mol Biol Evol ; 31(12): 3164-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25158797

RESUMO

There are two strong and equally important predictors of rates of human protein evolution: The amount the gene is expressed and the proportion of exonic sequence devoted to control splicing, mediated largely by selection on exonic splice enhancer (ESE) motifs. Is the same true for noncoding RNAs, known to be under very weak purifying selection? Prior evidence suggests that selection at splice sites in long intergenic noncoding RNAs (lincRNAs) is important. We now report multiple lines of evidence indicating that the great majority of purifying selection operating on lincRNAs in humans is splice related. Splice-related parameters explain much of the between-gene variation in evolutionary rate in humans. Expression rate is not a relevant predictor, although expression breadth is weakly so. In contrast to protein-coding RNAs, we observe no relationship between evolutionary rate and lincRNA stability. As in protein-coding genes, ESEs are especially abundant near splice junctions and evolve slower than non-ESE sequence equidistant from boundaries. Nearly all constraint in lincRNAs is at exon ends (N.B. the same is not witnessed in Drosophila). Although we cannot definitely answer the question as to why splice-related selection is so important, we find no evidence that splicing might enable the nonsense-mediated decay pathway to capture transcripts incorrectly processed by ribosomes. We find evidence consistent with the notion that splicing modifies the underlying chromatin through recruitment of splice-coupled chromatin modifiers, such as CHD1, which in turn might modulate neighbor gene activity. We conclude that most selection on human lincRNAs is splice mediated and suggest that the possibility of splice-chromatin coupling is worthy of further scrutiny.


Assuntos
RNA Longo não Codificante/genética , Animais , Evolução Molecular , Éxons , Expressão Gênica , Humanos , Íntrons , Macaca mulatta/genética , Modelos Genéticos , Sítios de Splice de RNA , Splicing de RNA , Seleção Genética , Análise de Sequência de RNA
5.
Genome Biol ; 20(1): 11, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635026

RESUMO

Following publication of the original article [1], the authors reported the following error in the name of the fourth author.

6.
Genome Biol ; 20(1): 124, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31215477

RESUMO

Following publication of the original article [1], the authors reported the following error in the name of the fourth author.

7.
Genome Biol ; 19(1): 229, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591072

RESUMO

BACKGROUND: RNA secondary structures in the 5'-untranslated regions (5'-UTR) of mRNAs are key to the post-transcriptional regulation of gene expression. While it is evident that non-canonical Hoogsteen-paired G-quadruplex (rG4) structures somehow contribute to the regulation of translation initiation, the nature and extent of human mRNAs that are regulated by rG4s is not known. Here, we provide new insights into a mechanism by which rG4 formation modulates translation. RESULTS: Using transcriptome-wide ribosome profiling, we identify rG4-driven mRNAs in HeLa cells and reveal that rG4s in the 5'-UTRs of inefficiently translated mRNAs associate with high ribosome density and the translation of repressive upstream open reading frames (uORF). We demonstrate that depletion of the rG4-unwinding helicases DHX36 and DHX9 promotes translation of rG4-associated uORFs while reducing the translation of coding regions for transcripts that comprise proto-oncogenes, transcription factors and epigenetic regulators. Transcriptome-wide identification of DHX9 binding sites shows that reduced translation is mediated through direct physical interaction between the helicase and its rG4 substrate. CONCLUSION: This study identifies human mRNAs whose translation efficiency is modulated by the DHX36- and DHX9-dependent folding/unfolding of rG4s within their 5'-UTRs. We reveal a previously unknown mechanism for translation regulation in which unresolved rG4s within 5'-UTRs promote 80S ribosome formation on upstream start codons, causing inhibition of translation of the downstream main open reading frames. Our findings suggest that the interaction of helicases with rG4s could be targeted for future therapeutic intervention.


Assuntos
RNA Helicases DEAD-box/metabolismo , Quadruplex G , Proteínas de Neoplasias/metabolismo , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Humanos , Fases de Leitura Aberta , Polirribossomos/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma
8.
Nat Struct Mol Biol ; 25(10): 951-957, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30275516

RESUMO

Control of DNA methylation level is critical for gene regulation, and the factors that govern hypomethylation at CpG islands (CGIs) are still being uncovered. Here, we provide evidence that G-quadruplex (G4) DNA secondary structures are genomic features that influence methylation at CGIs. We show that the presence of G4 structure is tightly associated with CGI hypomethylation in the human genome. Surprisingly, we find that these G4 sites are enriched for DNA methyltransferase 1 (DNMT1) occupancy, which is consistent with our biophysical observations that DNMT1 exhibits higher binding affinity for G4s as compared to duplex, hemi-methylated, or single-stranded DNA. The biochemical assays also show that the G4 structure itself, rather than sequence, inhibits DNMT1 enzymatic activity. Based on these data, we propose that G4 formation sequesters DNMT1 thereby protecting certain CGIs from methylation and inhibiting local methylation.


Assuntos
Metilação de DNA , Quadruplex G , Ilhas de CpG , DNA/metabolismo , Epigenômica , Regulação da Expressão Gênica , Genoma Humano , Humanos , Células K562 , Método de Monte Carlo , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA