Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Neural Eng ; 21(4)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39116891

RESUMO

Objective.To treat neurological and psychiatric diseases with deep brain stimulation (DBS), a trained clinician must select parameters for each patient by monitoring their symptoms and side-effects in a months-long trial-and-error process, delaying optimal clinical outcomes. Bayesian optimization has been proposed as an efficient method to quickly and automatically search for optimal parameters. However, conventional Bayesian optimization does not account for patient safety and could trigger unwanted or dangerous side-effects.Approach.In this study we develop SAFE-OPT, a Bayesian optimization algorithm designed to learn subject-specific safety constraints to avoid potentially harmful stimulation settings during optimization. We prototype and validate SAFE-OPT using a rodent multielectrode stimulation paradigm which causes subject-specific performance deficits in a spatial memory task. We first use data from an initial cohort of subjects to build a simulation where we design the best SAFE-OPT configuration for safe and accurate searchingin silico. Main results.We then deploy both SAFE-OPT and conventional Bayesian optimization without safety constraints in new subjectsin vivo, showing that SAFE-OPT can find an optimally high stimulation amplitude that does not harm task performance with comparable sample efficiency to Bayesian optimization and without selecting amplitude values that exceed the subject's safety threshold.Significance.The incorporation of safety constraints will provide a key step for adopting Bayesian optimization in real-world applications of DBS.


Assuntos
Algoritmos , Teorema de Bayes , Estimulação Encefálica Profunda , Estimulação Encefálica Profunda/métodos , Animais , Ratos , Masculino , Humanos , Simulação por Computador
2.
J Neural Eng ; 18(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33271520

RESUMO

Objective.Neural modulation is a fundamental tool for understanding and treating neurological and psychiatric diseases. However, due to the high-dimensional space, subject-specific responses, and variability within each subject, it is a major challenge to select the stimulation parameters that have the desired effect. Data-driven optimization provides a range of different algorithms and tools for addressing this challenge, but each of these algorithms has specific strengths and limitations, and therefore must be carefully designed for a given neural modulation problem. Here we present a framework for designing data-driven optimization algorithms for neural modulation.Approach.We develop this framework using an optogenetic medial septum stimulation model, where the goal is to find the stimulation parameters that modulate hippocampal gamma power to a desired value. This framework proceeds in four steps: (a) collecting stimulation data, (b) creating high-throughput simulation models, (c) prototyping a range of different data-driven optimization algorithms and evaluating their performance, and (d) deploying the best performing algorithmin vivo. Main results.Following this framework, we prototype and design an algorithm specifically for finding the medial septum optogenetic stimulation parameters that maximize hippocampal gamma power. Building on this, we then change our objective function to find the stimulation parameters that modulate gamma to a specific setpoint, use the framework to understand and anticipate the results before deployingin vivo. Significance.We show that this framework can be used to design an effective optimization solution for a specific neural modulation problem, and discuss how it can potentially be applied beyond the optogenetic medial septum stimulation model.


Assuntos
Hipocampo , Optogenética , Algoritmos , Hipocampo/fisiologia , Optogenética/métodos
3.
J Neural Eng ; 17(4): 046009, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32492658

RESUMO

OBJECTIVE: Developing a new neuromodulation method for epilepsy treatment requires a large amount of time and resources to find effective stimulation parameters and often fails due to inter-subject variability in stimulation effect. As an alternative, we present a novel data-driven surrogate approach which can optimize the neuromodulation efficiently by investigating the stimulation effect on surrogate neural states. APPROACH: Medial septum (MS) optogenetic stimulation was applied for modulating electrophysiological activities of the hippocampus in a rat temporal lobe epilepsy model. For the new approach, we implemented machine learning techniques to describe the pathological neural states and to optimize the stimulation parameters. Specifically, first, we found neural state surrogates to estimate a seizure susceptibility based on hippocampal local field potentials. Second, we modulated the neural state surrogates in a desired way with the subject-specific optimal stimulation parameters found by in vivo Bayesian optimization. Finally, we tested whether modulating the neural state surrogates affected seizure frequency. MAIN RESULTS: We found two neural state surrogates: The first was hippocampal theta power by considering its well-known relationship with epilepsy, and the second was the output of pre-ictal state model (PriSM) which was built by characterizing the hippocampal activity during the pre-ictal period. The optimal stimulation parameters found by Bayesian optimization outperformed the other parameters in terms of modulating the surrogates toward anti-seizure neural state. When treatment efficacy was tested, the subject-specific optimal parameters for increasing theta power were more effective to suppress seizures than fixed stimulation parameter (7 Hz). However, modulation of the other neural state surrogate, PriSM, did not suppress seizures. SIGNIFICANCE: The surrogate approach can save enormous time and resources to find subject-specific optimal stimulation parameters which can effectively modulate neural states and further improve therapeutic effectiveness. This approach can also be used for improving neuromodulation treatment of other neurological or psychiatric diseases.


Assuntos
Epilepsia do Lobo Temporal , Animais , Teorema de Bayes , Epilepsia do Lobo Temporal/terapia , Hipocampo , Optogenética , Ratos , Convulsões/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA