Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Heart J ; 40(35): 2964-2975, 2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31170290

RESUMO

AIMS: Calmodulinopathies are rare life-threatening arrhythmia syndromes which affect mostly young individuals and are, caused by mutations in any of the three genes (CALM 1-3) that encode identical calmodulin proteins. We established the International Calmodulinopathy Registry (ICalmR) to understand the natural history, clinical features, and response to therapy of patients with a CALM-mediated arrhythmia syndrome. METHODS AND RESULTS: A dedicated Case Report File was created to collect demographic, clinical, and genetic information. ICalmR has enrolled 74 subjects, with a variant in the CALM1 (n = 36), CALM2 (n = 23), or CALM3 (n = 15) genes. Sixty-four (86.5%) were symptomatic and the 10-year cumulative mortality was 27%. The two prevalent phenotypes are long QT syndrome (LQTS; CALM-LQTS, n = 36, 49%) and catecholaminergic polymorphic ventricular tachycardia (CPVT; CALM-CPVT, n = 21, 28%). CALM-LQTS patients have extremely prolonged QTc intervals (594 ± 73 ms), high prevalence (78%) of life-threatening arrhythmias with median age at onset of 1.5 years [interquartile range (IQR) 0.1-5.5 years] and poor response to therapies. Most electrocardiograms (ECGs) show late onset peaked T waves. All CALM-CPVT patients were symptomatic with median age of onset of 6.0 years (IQR 3.0-8.5 years). Basal ECG frequently shows prominent U waves. Other CALM-related phenotypes are idiopathic ventricular fibrillation (IVF, n = 7), sudden unexplained death (SUD, n = 4), overlapping features of CPVT/LQTS (n = 3), and predominant neurological phenotype (n = 1). Cardiac structural abnormalities and neurological features were present in 18 and 13 patients, respectively. CONCLUSION: Calmodulinopathies are largely characterized by adrenergically-induced life-threatening arrhythmias. Available therapies are disquietingly insufficient, especially in CALM-LQTS. Combination therapy with drugs, sympathectomy, and devices should be considered.


Assuntos
Arritmias Cardíacas/genética , Análise Mutacional de DNA , Variação Genética/genética , Sistema de Registros , Idade de Início , Arritmias Cardíacas/mortalidade , Calmodulina/genética , Criança , Pré-Escolar , Morte Súbita Cardíaca/etiologia , Feminino , Humanos , Síndrome do QT Longo/genética , Fenótipo , Taxa de Sobrevida , Taquicardia Ventricular/genética
3.
Mediators Inflamm ; 2016: 5902947, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242392

RESUMO

Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a "working-network" in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described.


Assuntos
Sistema Nervoso Autônomo/metabolismo , Quimiocinas/metabolismo , Cardiopatias/metabolismo , Animais , Sistema Nervoso Autônomo/imunologia , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Cardiopatias/imunologia , Humanos , Fatores de Risco
4.
JAMA ; 309(14): 1473-82, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23571586

RESUMO

IMPORTANCE: Intrauterine fetal death or stillbirth occurs in approximately 1 out of every 160 pregnancies and accounts for 50% of all perinatal deaths. Postmortem evaluation fails to elucidate an underlying cause in many cases. Long QT syndrome (LQTS) may contribute to this problem. OBJECTIVE: To determine the spectrum and prevalence of mutations in the 3 most common LQTS susceptible genes (KCNQ1, KCNH2, and SCN5A) for a cohort of unexplained cases. DESIGN, SETTING, AND PATIENTS: In this case series, retrospective postmortem genetic testing was conducted on a convenience sample of 91 unexplained intrauterine fetal deaths (mean [SD] estimated gestational age at fetal death, 26.3 [8.7] weeks) that were collected from 2006-2012 by the Mayo Clinic, Rochester, Minnesota, or the Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. More than 1300 ostensibly healthy individuals served as controls. In addition, publicly available exome databases were assessed for the general population frequency of identified genetic variants. MAIN OUTCOMES AND MEASURES: Comprehensive mutational analyses of KCNQ1 (KV7.1, LQTS type 1), KCNH2 (HERG/KV11.1, LQTS type 2), and SCN5A (NaV1.5, LQTS type 3) were performed using denaturing high-performance liquid chromatography and direct DNA sequencing on genomic DNA extracted from decedent tissue. Functional analyses of novel mutations were performed using heterologous expression and patch-clamp recording. RESULTS: The 3 putative LQTS susceptibility missense mutations (KCNQ1, p.A283T; KCNQ1, p.R397W; and KCNH2 [1b], p.R25W), with a heterozygous frequency of less than 0.05% in more than 10 000 publicly available exomes and absent in more than 1000 ethnically similar control patients, were discovered in 3 intrauterine fetal deaths (3.3% [95% CI, 0.68%-9.3%]). Both KV7.1-A283T (16-week male) and KV7.1-R397W (16-week female) mutations were associated with marked KV7.1 loss-of-function consistent with in utero LQTS type 1, whereas the HERG1b-R25W mutation (33.2-week male) exhibited a loss of function consistent with in utero LQTS type 2. In addition, 5 intrauterine fetal deaths hosted SCN5A rare nonsynonymous genetic variants (p.T220I, p.R1193Q, involving 2 cases, and p.P2006A, involving 2 cases) that conferred in vitro electrophysiological characteristics consistent with potentially proarrhythmic phenotypes. CONCLUSIONS AND RELEVANCE: In this molecular genetic evaluation of 91 cases of intrauterine fetal death, missense mutations associated with LQTS susceptibility were discovered in 3 cases (3.3%) and overall, genetic variants leading to dysfunctional LQTS-associated ion channels in vitro were discovered in 8 cases (8.8%). These preliminary findings may provide insights into mechanisms of some cases of stillbirth.


Assuntos
Análise Mutacional de DNA , Morte Fetal/genética , Síndrome do QT Longo/genética , Mutação de Sentido Incorreto , Autopsia , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Feto/fisiopatologia , Expressão Gênica , Humanos , Recém-Nascido , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Masculino , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Estudos Retrospectivos
5.
Circ Genom Precis Med ; 14(2): e003097, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33566628

RESUMO

BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disease characterized by fibrofatty replacement of the right and left ventricle, often causing ventricular dysfunction and life-threatening arrhythmias. Variants in desmosomal genes account for up to 60% of cases. Our objective was to establish the prevalence and clinical features of ACM stemming from pathogenic variants in the nondesmosomal cadherin 2 (CDH2), a novel genetic substrate of ACM. METHODS: A cohort of 500 unrelated patients with a definite diagnosis of ACM and no disease-causing variants in the main ACM genes was assembled. Genetic screening of CDH2 was performed through next-generation or Sanger sequencing. Whenever possible, cascade screening was initiated in the families of CDH2-positive probands, and clinical evaluation was performed. RESULTS: Genetic screening of CDH2 led to the identification of 7 rare variants: 5, identified in 6 probands, were classified as pathogenic or likely pathogenic. The previously established p.D407N pathogenic variant was detected in 2 additional probands. Probands and family members with pathogenic/likely pathogenic variants in CDH2 were clinically evaluated, and along with previously published cases, altogether contributed to the identification of gene-specific features (13 cases from this cohort and 11 previously published, for a total of 9 probands and 15 family members). Ventricular arrhythmic events occurred in most CDH2-positive subjects (20/24, 83%), while the occurrence of heart failure was rare (2/24, 8.3%). Among probands, sustained ventricular tachycardia and sudden cardiac death occurred in 5/9 (56%). CONCLUSIONS: In this worldwide cohort of previously genotype-negative ACM patients, the prevalence of probands with CDH2 pathogenic/likely pathogenic variants was 1.2% (6/500). Our data show that this cohort of CDH2-ACM patients has a high incidence of ventricular arrhythmias, while evolution toward heart failure is rare.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Caderinas/genética , Adolescente , Adulto , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/epidemiologia , Caderinas/química , Feminino , Frequência do Gene , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Prevalência , Domínios Proteicos/genética , Adulto Jovem
6.
PLoS One ; 15(11): e0242627, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253266

RESUMO

Chronic conditions requiring long-term rehabilitation therapies, such as hypertension, stroke, or cancer, involve complex interactions between various systems/organs of the body and mutual influences, thus implicating a multiorgan approach. The dual-flow IVTech LiveBox2 bioreactor is a recently developed inter-connected dynamic cell culture model able to mimic organ crosstalk, since cells belonging to different organs can be connected and grown under flow conditions in a more physiological environment. This study aims to setup for the first time a 2-way connected culture of human neuroblastoma cells, SH-SY5Y, and Human Coronary Artery Smooth Muscle Cells, HCASMC through a dual-flow IVTech LiveBox2 bioreactor, in order to represent a simplified model of nervous-cardiovascular systems crosstalk, possibly relevant for the above-mentioned diseases. The system was tested by treating the cells with 10nM angiotensin II (AngII) inducing PKCßII/HuR/VEGF pathway activation, since AngII and PKCßII/HuR/VEGF pathway are relevant in cardiovascular and neuroscience research. Three different conditions were applied: 1- HCASMC and SH-SY5Y separately seeded in petri dishes (static condition); 2- the two cell lines separately seeded under flow (dynamic condition); 3- the two lines, seeded in dynamic conditions, connected, each maintaining its own medium, with a membrane as interface for biohumoral changes between the two mediums, and then treated. We detected that only in condition 3 there was a synergic AngII-dependent VEGF production in SH-SY5Y cells coupled to an AngII-dependent PKCßII/HuR/VEGF pathway activation in HCASMC, consistent with the observed physiological response in vivo. HCASMC response to AngII seems therefore to be generated by/derived from the reciprocal cell crosstalk under the dynamic inter-connection ensured by the dual flow LiveBox 2 bioreactor. This system can represent a useful tool for studying the crosstalk between organs, helpful for instance in rehabilitation research or when investigating chronic diseases; further, it offers the advantageous opportunity of cultivating each cell line in its own medium, thus mimicking, at least in part, distinct tissue milieu.


Assuntos
Reatores Biológicos , Comunicação Celular , Modelos Cardiovasculares , Modelos Neurológicos , Miócitos de Músculo Liso/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Humanos , Miócitos de Músculo Liso/citologia , Neurônios/citologia
7.
Front Cardiovasc Med ; 5: 176, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619883

RESUMO

In spite of the widespread role of calmodulin (CaM) in cellular signaling, CaM mutations lead specifically to cardiac manifestations, characterized by remarkable electrical instability and a high incidence of sudden death at young age. Penetrance of the mutations is surprisingly high, thus postulating a high degree of functional dominance. According to the clinical patterns, arrhythmogenesis in CaM mutations can be attributed, in the majority of cases, to either prolonged repolarization (as in long-QT syndrome, LQTS phenotype), or to instability of the intracellular Ca2+ store (as in catecholamine-induced tachycardias, CPVT phenotype). This review discusses how mutations affect CaM signaling function and how this may relate to the distinct arrhythmia phenotypes/mechanisms observed in patients; this involves mechanistic interpretation of negative dominance and mutation-specific CaM-target interactions. Knowledge of the mechanisms involved may allow critical approach to clinical manifestations and aid in the development of therapeutic strategies for "calmodulinopathies," a recently identified nosological entity.

8.
Front Cardiovasc Med ; 5: 175, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30574507

RESUMO

Sudden cardiac death (SCD) in the young may often be the first manifestation of a genetic arrythmogenic disease that had remained undiagnosed. Despite the significant discoveries of the genetic bases of inherited arrhythmia syndromes, there remains a measurable fraction of cases where in-depth clinical and genetic investigations fail to identify the underlying SCD etiology. A few years ago, 2 cases of infants with recurrent cardiac arrest episodes, due to what appeared to be as a severe form of long QT syndrome (LQTS), came to our attention. These prompted a number of clinical and genetic research investigations that allowed us to identify a novel, closely associated to LQTS but nevertheless distinct, clinical entity that is now known as calmodulinopathy. Calmodulinopathy is a life-threatening arrhythmia syndrome, affecting mostly young individuals, caused by mutations in any of the 3 genes encoding calmodulin (CaM). Calmodulin is a ubiquitously expressed Ca2+ signaling protein that, in the heart, modulates several ion channels and participates in a plethora of cellular processes. We will hereby provide an overview of CaM's structure and function under normal and disease states, highlighting the genetic etiology of calmodulinopathy and the related disease mechanisms. We will also discuss the phenotypic spectrum of patients with calmodulinopathy and present state-of-the art approaches with patient-derived induced pluripotent stem cells that have been thus far adopted in order to accurately model calmodulinopathy in vitro, decipher disease mechanisms and identify novel therapies.

9.
Int J Cardiol ; 250: 139-145, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29032884

RESUMO

BACKGROUND: Ventricular fibrillation (VF) is a major cause of sudden cardiac death. In some cases clinical investigations fail to identify the underlying cause and the event is classified as idiopathic (IVF). Since mutations in arrhythmia-associated genes frequently determine arrhythmia susceptibility, screening for disease-predisposing variants could improve IVF diagnostics. METHODS AND RESULTS: The study included 76 Finnish and Italian patients with a mean age of 31.2years at the time of the VF event, collected between the years 1996-2016 and diagnosed with idiopathic, out-of-hospital VF. Using whole-exome sequencing (WES) and next-generation sequencing (NGS) approaches, we aimed to identify genetic variants potentially contributing to the life-threatening arrhythmias of these patients. Combining the results from the two study populations, we identified pathogenic or likely pathogenic variants residing in the RYR2, CACNA1C and DSP genes in 7 patients (9%). Most of them (5, 71%) were found in the RYR2 gene, associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). These genetic findings prompted clinical investigations leading to disease reclassification. Additionally, in 9 patients (11.8%) we detected 10 novel or extremely rare (MAF<0.005%) variants that were classified as of unknown significance (VUS). CONCLUSION: The results of our study suggest that a subset of patients originally diagnosed with IVF may carry clinically-relevant variants in genes associated with cardiac channelopathies and cardiomyopathies. Although misclassification of other cardiac channelopathies as IVF appears rare, our findings indicate that the possibility of CPVT as the underlying disease entity should be carefully evaluated in IVF patients.


Assuntos
Variação Genética/genética , Taquicardia Ventricular/epidemiologia , Taquicardia Ventricular/genética , Fibrilação Ventricular/epidemiologia , Fibrilação Ventricular/genética , Adolescente , Adulto , Criança , Estudos de Coortes , Feminino , Finlândia/epidemiologia , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Análise de Sequência de DNA/métodos , Taquicardia Ventricular/diagnóstico , Fibrilação Ventricular/diagnóstico , Adulto Jovem
10.
Int J Cardiol ; 249: 268-273, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28527814

RESUMO

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is traditionally considered as primarily affecting the right ventricle. Mutations in genes encoding desmosomal proteins account for 40-60% of cases. Genotype-phenotype correlations are scant and mostly non gene-specific. Accordingly, we assessed the genotype-phenotype correlation for desmoplakin (DSP) missense and non-missense mutations causing ARVC. METHODS AND RESULTS: We analyzed 27 ARVC patients carrying a missense or a non-missense DSP mutation, with complete clinical assessment. The two groups were compared for clinical parameters, basic demographics such as sex, age at diagnosis, age at disease onset, as well as prevalence of symptoms and arrhythmic events. Missense DSP variants were present in 10 patients and non-missense in 17. Mean age at diagnosis and at first arrhythmic event did not differ between the two groups. Also the prevalence of symptoms, either major (60% vs 59%, p=1) or all (80% vs 88%, p=0.61), did not differ. By contrast, left ventricular (LV) dysfunction was significantly more prevalent among patients with non-missense mutations (76.5% vs 10%, p=0.001), who were also much more likely to have a structural LV involvement by Cardiac Magnetic Resonance (CMR) (92% vs 22%, p=0.001). CONCLUSIONS: For ARVC patients, both missense and non-missense DSP mutations carry a high arrhythmic risk. Non-missense mutations are specifically associated with left-dominant forms. The presence of DSP non-missense mutations should alert to the likely development of LV dysfunction. These findings highlight the clinical relevance of genetic testing even after the clinical diagnosis of ARVC and the growing clinical impact of genetics.


Assuntos
Displasia Arritmogênica Ventricular Direita/diagnóstico por imagem , Displasia Arritmogênica Ventricular Direita/genética , Desmoplaquinas/genética , Estudos de Associação Genética/métodos , Mutação de Sentido Incorreto/genética , Adulto , Displasia Arritmogênica Ventricular Direita/fisiopatologia , Eletrocardiografia/tendências , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA