Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(3): 446-461.e7, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38423012

RESUMO

In response to viral infection, how cells balance translational shutdown to limit viral replication and the induction of antiviral components like interferons (IFNs) is not well understood. Moreover, how distinct isoforms of IFN-induced oligoadenylate synthetase 1 (OAS1) contribute to this antiviral response also requires further elucidation. Here, we show that human, but not mouse, OAS1 inhibits SARS-CoV-2 replication through its canonical enzyme activity via RNase L. In contrast, both mouse and human OAS1 protect against West Nile virus infection by a mechanism distinct from canonical RNase L activation. OAS1 binds AU-rich elements (AREs) of specific mRNAs, including IFNß. This binding leads to the sequestration of IFNß mRNA to the endomembrane regions, resulting in prolonged half-life and continued translation. Thus, OAS1 is an ARE-binding protein with two mechanisms of antiviral activity: driving inhibition of translation but also a broader, non-canonical function of protecting IFN expression from translational shutdown.


Assuntos
Interferons , Oligorribonucleotídeos , Viroses , Animais , Humanos , Camundongos , Nucleotídeos de Adenina , Antivirais/farmacologia , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo
2.
Immunity ; 50(1): 51-63.e5, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635239

RESUMO

Interferon-inducible human oligoadenylate synthetase-like (OASL) and its mouse ortholog, Oasl2, enhance RNA-sensor RIG-I-mediated type I interferon (IFN) induction and inhibit RNA virus replication. Here, we show that OASL and Oasl2 have the opposite effect in the context of DNA virus infection. In Oasl2-/- mice and OASL-deficient human cells, DNA viruses such as vaccinia, herpes simplex, and adenovirus induced increased IFN production, which resulted in reduced virus replication and pathology. Correspondingly, ectopic expression of OASL in human cells inhibited IFN induction through the cGAS-STING DNA-sensing pathway. cGAS was necessary for the reduced DNA virus replication observed in OASL-deficient cells. OASL directly and specifically bound to cGAS independently of double-stranded DNA, resulting in a non-competitive inhibition of the second messenger cyclic GMP-AMP production. Our findings define distinct mechanisms by which OASL differentially regulates host IFN responses during RNA and DNA virus infection and identify OASL as a negative-feedback regulator of cGAS.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Infecções por Vírus de DNA/imunologia , Vírus de DNA/fisiologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , 2',5'-Oligoadenilato Sintetase/genética , Animais , AMP Cíclico/metabolismo , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Células THP-1 , Replicação Viral
3.
Immunity ; 49(3): 413-426.e5, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30170814

RESUMO

Inflammasome-activated caspase-1 cleaves gasdermin D to unmask its pore-forming activity, the predominant consequence of which is pyroptosis. Here, we report an additional biological role for gasdermin D in limiting cytosolic DNA surveillance. Cytosolic DNA is sensed by Aim2 and cyclic GMP-AMP synthase (cGAS) leading to inflammasome and type I interferon responses, respectively. We found that gasdermin D activated by the Aim2 inflammasome suppressed cGAS-driven type I interferon response to cytosolic DNA and Francisella novicida in macrophages. Similarly, interferon-ß (IFN-ß) response to F. novicida infection was elevated in gasdermin D-deficient mice. Gasdermin D-mediated negative regulation of IFN-ß occurred in a pyroptosis-, interleukin-1 (IL-1)-, and IL-18-independent manner. Mechanistically, gasdermin D depleted intracellular potassium (K+) via membrane pores, and this K+ efflux was necessary and sufficient to inhibit cGAS-dependent IFN-ß response. Thus, our findings have uncovered an additional interferon regulatory module involving gasdermin D and K+ efflux.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Francisella/fisiologia , Infecções por Bactérias Gram-Negativas/imunologia , Inflamassomos/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Interferon Tipo I/metabolismo , Interleucina-1/metabolismo , Interleucina-18/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Proteínas de Ligação a Fosfato , Potássio/metabolismo , RNA Interferente Pequeno/genética
4.
Mol Cell ; 76(1): 11-26.e7, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31400850

RESUMO

Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in aggressive cancers. We show that the disruption of RAD51-associated protein 1 (RAD51AP1) in ALT+ cancer cells leads to generational telomere shortening. This is due to RAD51AP1's involvement in RAD51-dependent homologous recombination (HR) and RAD52-POLD3-dependent break induced DNA synthesis. RAD51AP1 KO ALT+ cells exhibit telomere dysfunction and cytosolic telomeric DNA fragments that are sensed by cGAS. Intriguingly, they activate ULK1-ATG7-dependent autophagy as a survival mechanism to mitigate DNA damage and apoptosis. Importantly, RAD51AP1 protein levels are elevated in ALT+ cells due to MMS21 associated SUMOylation. Mutation of a single SUMO-targeted lysine residue perturbs telomere dynamics. These findings indicate that RAD51AP1 is an essential mediator of the ALT mechanism and is co-opted by post-translational mechanisms to maintain telomere length and ensure proliferation of ALT+ cancer cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neoplasias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Autofagia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proliferação de Células , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Recombinação Homóloga , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligases/genética , Ligases/metabolismo , Lisina , Neoplasias/genética , Neoplasias/patologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Estabilidade Proteica , Proteínas de Ligação a RNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Transdução de Sinais , Sumoilação , Telômero/genética , Telômero/patologia
5.
EMBO J ; 41(14): e110155, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35611591

RESUMO

Mitogen-activated protein kinases (MAPKs) drive key signaling cascades during neuronal survival and degeneration. The localization of kinases to specific subcellular compartments is a critical mechanism to locally control signaling activity and specificity upon stimulation. However, how MAPK signaling components tightly control their localization remains largely unknown. Here, we systematically analyzed the phosphorylation and membrane localization of all MAPKs expressed in dorsal root ganglia (DRG) neurons, under control and stress conditions. We found that MAP3K12/dual leucine zipper kinase (DLK) becomes phosphorylated and palmitoylated, and it is recruited to sphingomyelin-rich vesicles upon stress. Stress-induced DLK vesicle recruitment is essential for kinase activation; blocking DLK-membrane interaction inhibits downstream signaling, while DLK recruitment to ectopic subcellular structures is sufficient to induce kinase activation. We show that the localization of DLK to newly formed vesicles is essential for local signaling. Inhibition of membrane internalization blocks DLK activation and protects against neurodegeneration in DRG neurons. These data establish vesicular assemblies as dynamically regulated platforms for DLK signaling during neuronal stress responses.


Assuntos
Zíper de Leucina , MAP Quinase Quinase Quinases , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Transdução de Sinais
6.
Mol Cell Proteomics ; 21(4): 100221, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35227894

RESUMO

Muscle-specific receptor tyrosine kinase (MuSK) agonist antibodies were developed 2 decades ago to explore the benefits of receptor activation at the neuromuscular junction. Unlike agrin, the endogenous agonist of MuSK, agonist antibodies function independently of its coreceptor low-density lipoprotein receptor-related protein 4 to delay the onset of muscle denervation in mouse models of ALS. Here, we performed dose-response and time-course experiments on myotubes to systematically compare site-specific phosphorylation downstream of each agonist. Remarkably, both agonists elicited similar intracellular responses at known and newly identified MuSK signaling components. Among these was inducible tyrosine phosphorylation of multiple Rab GTPases that was blocked by MuSK inhibition. Importantly, mutation of this site in Rab10 disrupts association with its effector proteins, molecule interacting with CasL 1/3. Together, these data provide in-depth characterization of MuSK signaling, describe two novel MuSK inhibitors, and expose phosphorylation of Rab GTPases downstream of receptor tyrosine kinase activation in myotubes.


Assuntos
Receptores Proteína Tirosina Quinases , Proteínas rab de Ligação ao GTP , Agrina/genética , Agrina/metabolismo , Animais , Camundongos , Fosforilação , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
7.
Immunity ; 40(6): 936-48, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24931123

RESUMO

Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN) and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein has antiviral activity and mediates RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone-marrow-derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL, Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation.


Assuntos
2',5'-Oligoadenilato Sintetase/imunologia , RNA Helicases DEAD-box/imunologia , Infecções por Vírus de DNA/imunologia , Interferon Tipo I/imunologia , Infecções por Vírus de RNA/imunologia , 2',5'-Oligoadenilato Sintetase/genética , Animais , Proteína DEAD-box 58 , Células HCT116 , Células HEK293 , Humanos , Imunidade Inata , Fator Regulador 7 de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poliubiquitina , Ligação Proteica/imunologia , Interferência de RNA , RNA Interferente Pequeno , Receptores Imunológicos , Transdução de Sinais/imunologia , Replicação Viral/imunologia
10.
Proc Natl Acad Sci U S A ; 115(44): 11244-11249, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30322923

RESUMO

The E3 ubiquitin ligase CRL4COP1/DET1 is active in the absence of ERK signaling, modifying the transcription factors ETV1, ETV4, ETV5, and c-JUN with polyubiquitin that targets them for proteasomal degradation. Here we show that this posttranslational regulatory mechanism is active in neurons, with ETV5 and c-JUN accumulating within minutes of ERK activation. Mice with constitutive photomorphogenesis 1 (Cop1) deleted in neural stem cells showed abnormally elevated expression of ETV1, ETV4, ETV5, and c-JUN in the developing brain and spinal cord. Expression of c-JUN target genes Vimentin and Gfap was increased, whereas ETV5 and c-JUN both contributed to an expanded number of cells expressing genes associated with gliogenesis, including Olig1, Olig2, and Sox10. The mice had subtle morphological abnormalities in the cerebral cortex, hippocampus, and cerebellum by embryonic day 18 and died soon after birth. Elevated c-JUN, ETV5, and ETV1 contributed to the perinatal lethality, as several Cop1-deficient mice also lacking c-Jun and Etv5, or lacking Etv5 and heterozygous for Etv1, were viable.


Assuntos
Encéfalo/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fatores de Transcrição/metabolismo
11.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360794

RESUMO

Spinal muscular atrophy (SMA) is a motor neuron disease caused by insufficient levels of the survival motor neuron (SMN) protein. One of the most prominent pathological characteristics of SMA involves defects of the neuromuscular junction (NMJ), such as denervation and reduced clustering of acetylcholine receptors (AChRs). Recent studies suggest that upregulation of agrin, a crucial NMJ organizer promoting AChR clustering, can improve NMJ innervation and reduce muscle atrophy in the delta7 mouse model of SMA. To test whether the muscle-specific kinase (MuSK), part of the agrin receptor complex, also plays a beneficial role in SMA, we treated the delta7 SMA mice with an agonist antibody to MuSK. MuSK agonist antibody #13, which binds to the NMJ, significantly improved innervation and synaptic efficacy in denervation-vulnerable muscles. MuSK agonist antibody #13 also significantly increased the muscle cross-sectional area and myofiber numbers in these denervation-vulnerable muscles but not in denervation-resistant muscles. Although MuSK agonist antibody #13 did not affect the body weight, our study suggests that preservation of NMJ innervation by the activation of MuSK may serve as a complementary therapy to SMN-enhancing drugs to maximize the therapeutic effectiveness for all types of SMA patients.


Assuntos
Neurônios Motores/enzimologia , Atrofia Muscular Espinal/enzimologia , Junção Neuromuscular/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Modelos Animais de Doenças , Ativação Enzimática , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Junção Neuromuscular/genética , Junção Neuromuscular/patologia , Receptores Proteína Tirosina Quinases/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
12.
Physiol Mol Biol Plants ; 27(10): 2357-2377, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34744371

RESUMO

RNA interference (RNAi) is a universal phenomenon of RNA silencing or gene silencing with broader implications in important physiological and developmental processes of most eukaryotes, including plants. Small RNA (sRNA) are the critical drivers of the RNAi machinery that ensures down-regulation of the target genes in a homology-dependent manner and includes small-interfering RNAs (siRNAs) and micro RNAs (miRNAs). Plant researchers across the globe have exploited the powerful technique of RNAi to execute targeted suppression of desired genes in important crop plants, with an intent to improve crop protection against pathogens and pests for sustainable crop production. Biotic stresses cause severe losses to the agricultural productivity leading to food insecurity for future generations. RNAi has majorly contributed towards the development of designer crops that are resilient towards the various biotic stresses such as viruses, bacteria, fungi, insect pests, and nematodes. This review summarizes the recent progress made in the RNAi-mediated strategies against these biotic stresses, along with new insights on the future directions in research involving RNAi for crop protection.

13.
J Surg Res ; 254: 49-57, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32408030

RESUMO

BACKGROUND: This study describes the relationship between medical student perception of surgery, frequency of positive surgery clerkship activities, and overall surgical clerkship experience. METHODS: Medical students at four academic hospitals completed pre- and post-clerkship surveys assessing 1) surgery clerkship activities/experiences and 2) perceptions of surgery during the 2017-2018 academic year. RESULTS: Ninety-one percent of students completed both a pre- and post-clerkship survey (n = 162 of 179). Student perception of surgery significantly improved across the clerkship overall (P < 0.0001) and for 7 of 21 specific items. Eighty-six percent of students agreed that the clerkship was a meaningful experience. Sixty-six percent agreed that the operating room was a positive learning environment. Multivariable logistic regression identified one-on-one mentoring from a resident (OR [95% CI] = 2.12 [1.11-4.04], P = 0.02) and establishing a meaningful relationship with a surgical patient (OR = 2.21 [1.12-4.37], P = 0.02) as activities predictive of student agreement that the surgical clerkship was meaningful. Making an incision (OR = 2.92 [1.54-5.56], P = 0.001) and assisting in dissection (OR = 1.67 [1.03-2.69], P = 0.035) were predictive of student agreement that the operating room was a positive learning environment. Positive student perception of surgery before the clerkship was associated with increased frequency of positive clerkship activities including operative involvement (r = 0.26, P = 0.001) and relationships with surgical attendings (r = 0.20, P = 0.01), residents (r = 0.41, P < 0.0001), and patients (r = 0.24, P = 0.003). CONCLUSIONS: Interventions to improve surgery clerkship quality should target enhancing student relationships with residents and surgical patients as well as providing opportunity for student operative involvement beyond just suturing. In addition, fostering positive perceptions of surgery in the preclinical period may increase meaningfulness and experience with the later surgery clerkship.


Assuntos
Estágio Clínico/métodos , Educação de Graduação em Medicina/métodos , Cirurgia Geral/educação , Estudantes de Medicina , Centros Médicos Acadêmicos , Adulto , Feminino , Humanos , Aprendizagem , Masculino , Mentores , Percepção , Cirurgiões/psicologia , Inquéritos e Questionários , Adulto Jovem
14.
Neurobiol Dis ; 124: 340-352, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30528255

RESUMO

Amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motor neurons, is characterized by rapid decline of motor function and ultimately respiratory failure. As motor neuron death occurs late in the disease, therapeutics that prevent the initial disassembly of the neuromuscular junction may offer optimal functional benefit and delay disease progression. To test this hypothesis, we treated the SOD1G93A mouse model of ALS with an agonist antibody to muscle specific kinase (MuSK), a receptor tyrosine kinase required for the formation and maintenance of the neuromuscular junction. Chronic MuSK antibody treatment fully preserved innervation of the neuromuscular junction when compared with control-treated mice; however, no preservation of diaphragm function, motor neurons, or survival benefit was detected. These data show that anatomical preservation of neuromuscular junctions in the diaphragm via MuSK activation does not correlate with functional benefit in SOD1G93A mice, suggesting caution in employing MuSK activation as a therapeutic strategy for ALS patients.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/fisiopatologia , Diafragma/fisiopatologia , Junção Neuromuscular/fisiopatologia , Receptores Proteína Tirosina Quinases/agonistas , Esclerose Lateral Amiotrófica/patologia , Animais , Diafragma/patologia , Modelos Animais de Doenças , Ativação Enzimática/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/patologia , Junção Neuromuscular/patologia , Superóxido Dismutase-1/genética
15.
J Neurosci ; 37(46): 11074-11084, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28993483

RESUMO

The c-Jun-N-terminal kinase (JNK) signaling pathway regulates nervous system development, axon regeneration, and neuronal degeneration after acute injury or in chronic neurodegenerative disease. Dual leucine zipper kinase (DLK) is required for stress-induced JNK signaling in neurons, yet the factors that initiate DLK/JNK pathway activity remain poorly defined. In the present study, we identify the Ste20 kinases MAP4K4, misshapen-like kinase 1 (MINK1 or MAP4K6) and TNIK Traf2- and Nck-interacting kinase (TNIK or MAP4K7), as upstream regulators of DLK/JNK signaling in neurons. Using a trophic factor withdrawal-based model of neurodegeneration in both male and female embryonic mouse dorsal root ganglion neurons, we show that MAP4K4, MINK1, and TNIK act redundantly to regulate DLK activation and downstream JNK-dependent phosphorylation of c-Jun in response to stress. Targeting MAP4K4, MINK1, and TNIK, but not any of these kinases individually, is sufficient to protect neurons potently from degeneration. Pharmacological inhibition of MAP4Ks blocks stabilization and phosphorylation of DLK within axons and subsequent retrograde translocation of the JNK signaling complex to the nucleus. These results position MAP4Ks as important regulators of the DLK/JNK signaling pathway.SIGNIFICANCE STATEMENT Neuronal degeneration occurs in disparate circumstances: during development to refine neuronal connections, after injury to clear damaged neurons, or pathologically during disease. The dual leucine zipper kinase (DLK)/c-Jun-N-terminal kinase (JNK) pathway represents a conserved regulator of neuronal injury signaling that drives both neurodegeneration and axon regeneration, yet little is known about the factors that initiate DLK activity. Here, we uncover a novel role for a subfamily of MAP4 kinases consisting of MAP4K4, Traf2- and Nck-interacting kinase (TNIK or MAP4K7), and misshapen-like kinase 1 (MINK1 or MAP4K6) in regulating DLK/JNK signaling in neurons. Inhibition of these MAP4Ks blocks stress-induced retrograde JNK signaling and protects from neurodegeneration, suggesting that these kinases may represent attractive therapeutic targets.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/enzimologia , Proteínas Serina-Treonina Quinases/fisiologia , Estresse Fisiológico/fisiologia , Animais , Células Cultivadas , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Estresse Fisiológico/efeitos dos fármacos , Quinase Induzida por NF-kappaB
16.
J Immunol ; 196(9): 3877-86, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016603

RESUMO

Moloney leukemia virus 10, homolog (MOV10) is an IFN-inducible RNA helicase, associated with small RNA-induced silencing. In this article, we report that MOV10 exhibits antiviral activity, independent of its helicase function, against a number of positive- and negative-strand RNA viruses by enhancing type I IFN induction. Using a number of genome-edited knockout human cells, we show that IFN regulatory factor 3-mediated IFN induction and downstream IFN signaling through IFN receptor was necessary to inhibit virus replication by MOV10. MOV10 enhanced IFN regulatory factor 3-mediated transcription of IFN. However, this IFN induction by MOV10 was unique and independent of the known retinoic acid-inducible gene I/mitochondrial antiviral-signaling protein-mediated RNA-sensing pathway. Upon virus infection, MOV10 specifically required inhibitor of κB kinase ε, not TANK-binding kinase 1, for its antiviral activity. The important role of MOV10 in mediating antiviral signaling was further supported by the finding that viral proteases from picornavirus family specifically targeted MOV10 as a possible innate immune evasion mechanism. These results establish MOV10, an evolutionary conserved protein involved in RNA silencing, as an antiviral gene against RNA viruses that uses an retinoic acid-inducible gene I-like receptor-independent pathway to enhance IFN response.


Assuntos
Infecções por Cardiovirus/imunologia , Vírus da Encefalomiocardite/imunologia , RNA Helicases/metabolismo , Infecções por Rhabdoviridae/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Evasão da Resposta Imune , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , RNA Helicases/genética , Interferência de RNA , RNA Viral/genética , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais
17.
J Neurosci ; 35(7): 2927-41, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25698732

RESUMO

Axon degeneration is a programed process that takes place during development, in response to neuronal injury, and as a component of neurodegenerative disease pathology, yet the molecular mechanisms that drive this process remain poorly defined. In this study, we have developed a semi-automated, 384-well format axon degeneration assay in rat dorsal root ganglion (DRG) neurons using a trophic factor withdrawal paradigm. Using this setup, we have screened a library of known drugs and bioactives to identify several previously unappreciated regulators of axon degeneration, including lipoxygenases. Multiple structurally distinct lipoxygenase inhibitors as well as mouse DRG neurons lacking expression of 12/15-lipoxygenase display protection of axons in this context. Retinal ganglion cell axons from 12/15-lipoxygenase-null mice were similarly protected from degeneration following nerve crush injury. Through additional mechanistic studies, we demonstrate that lipoxygenases act cell autonomously within neurons to regulate degeneration, and are required for mitochondrial permeabilization and caspase activation in the axon. These findings suggest that these enzymes may represent an attractive target for treatment of neuropathies and provide a potential mechanism for the neuroprotection observed in various settings following lipoxygenase inhibitor treatment.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Axônios/patologia , Degeneração Neural/enzimologia , Algoritmos , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Axônios/metabolismo , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Gânglios Espinais/citologia , Biblioteca Gênica , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Degeneração Neural/diagnóstico , Degeneração Neural/tratamento farmacológico , Degeneração Neural/etiologia , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doenças do Nervo Óptico/complicações , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
18.
Carcinogenesis ; 37(5): 522-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26992898

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a devastating disease for which new treatments, such as immunotherapy are needed. Synthetic double-stranded RNAs, which activate toll-like receptor 3 (TLR3), have been used as potent adjuvants in cancer immunotherapy by triggering a proapoptotic response in cancer cells. A better understanding of the mechanism of TLR3-mediated apoptosis and its potential involvement in controlling tumor metastasis could lead to improvements in current treatment. Using paired, autologous primary and metastatic HNSCC cells we previously showed that metastatic, but not primary tumor-derived cells, were unable to activate prosurvival NF-κB in response to p(I):p(C) resulting in an enhanced apoptotic response. Here, we show that transcriptional downregulation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) in metastatic HNSCC cells causes a loss of TLR3-mediated NF-κB signaling, resulting in enhanced apoptosis. Loss of RIPK1 strongly correlates with metastatic disease in a cohort of HNSCC patients. This downregulation of RIPK1 is possibly mediated by enhanced methylation of the RIPK1 promoter in tumor cells and enhances protumorigenic properties such as cell migration. The results described here establish a novel mechanism of TLR3-mediated apoptosis in metastatic cells and may create new opportunities for using double stranded RNA to target metastatic tumor cells.


Assuntos
Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Metilação de DNA , Regulação para Baixo , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Imunidade Inata/genética , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , RNA de Cadeia Dupla/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Receptor 3 Toll-Like/metabolismo
19.
J Immunol ; 190(8): 4400-7, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23509350

RESUMO

Naturally occurring isothiocyanates (ITCs) from cruciferous vegetables are widely studied for their cancer chemopreventive effects. In this study, we investigated the effects of ITCs on TLR signaling, and found that the two most promising ITCs, phenethyl ITCs (PEITC) and D,L-sulforaphane (SFN), have differential effects on dsRNA-mediated innate immune signaling through TLR3. PEITC preferentially inhibited TLR3-mediated IFN regulatory factor 3 (IRF3) signaling and downstream gene expression in vivo and in vitro, whereas SFN caused inhibition of TLR3-mediated NF-κB signaling and downstream gene expression. Mechanistically, PEITC inhibited ligand (dsRNA)-dependent dimerization of TLR3, resulting in inhibition of signaling through IFN regulatory factor 3. In contrast, SFN did not disrupt TLR3 dimerization, indicating that it affects further downstream pathway resulting in NF-κB inhibition. To examine the biological significance of these findings in the context of antitumor activities of these compounds, we used two approaches: first, we showed that dsRNA-mediated apoptosis of tumor cells via TLR3 was inhibited in the presence of PEITC, whereas this response was augmented by SFN treatment; second, in a separate assay measuring anchorage-independent growth and colony formation by immortalized fibroblasts, we made similar observations. Again in this study, PEITC antagonized dsRNA-mediated inhibition of colony formation, whereas SFN enhanced the inhibition. These results indicate biologically relevant functional differences between two structurally similar ITCs and may provide important insights in therapeutic development of these compounds targeted to specific cancer.


Assuntos
Isotiocianatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Tiocianatos/farmacologia , Receptor 3 Toll-Like/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/antagonistas & inibidores , Fator Regulador 3 de Interferon/fisiologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Sulfóxidos , Receptor 3 Toll-Like/biossíntese , Receptor 3 Toll-Like/genética
20.
J Immunol ; 191(5): 2290-8, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23913966

RESUMO

Arginase I is a marker of murine M2 macrophages and is highly expressed in many inflammatory diseases. The basis for high arginase I expression in macrophages in vivo is incompletely understood but likely reflects integrated responses to combinations of stimuli. Our objective was to elucidate mechanisms involved in modulating arginase I induction by IL-4, the prototypical activator of M2 macrophages. IL-4 and 8-bromo-cAMP individually induce arginase I, but together they rapidly and synergistically induce arginase I mRNA, protein, and promoter activity in murine macrophage cells. Arginase I induction by IL-4 requires binding of the transcription factors STAT6 and C/EBPß to the IL-4 response element of the arginase I gene. Chromatin immunoprecipitation showed that the synergistic response involves binding of both transcription factors to the IL-4 response element at levels significantly greater than in response to IL-4 alone. The results suggest that C/EBPß is a limiting factor for the level of STAT6 bound to the IL-4 response element. The enhanced binding in the synergistic response was not due to increased expression of either STAT6 or C/EBPß but was correlated primarily with increased nuclear abundance of C/EBPß. Our findings also suggest that induction of arginase I expression is stochastic; that is, differences in induction reflect differences in probability of transcriptional activation and not simply differences in rate of transcription. Results of the present study also may be useful for understanding mechanisms underlying regulated expression of other genes in macrophages and other myeloid-derived cells in health and disease.


Assuntos
Arginase/biossíntese , AMP Cíclico/metabolismo , Regulação da Expressão Gênica/imunologia , Interleucina-4/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Regiões Promotoras Genéticas , Animais , Arginase/genética , Arginase/imunologia , Linhagem Celular , Imunoprecipitação da Cromatina , AMP Cíclico/imunologia , Immunoblotting , Interleucina-4/imunologia , Macrófagos/imunologia , Camundongos , Fenótipo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA