Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Radiat Res ; 201(1): 7-18, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019093

RESUMO

Exposure to high-dose ionizing radiation can lead to life-threatening injuries and mortality. Bone marrow is the most sensitive organ to radiation damage, resulting in the hematopoietic acute radiation syndrome (H-ARS) with the potential sequelae of infection, hemorrhage, anemia, and death if untreated. The development of medical countermeasures (MCMs) to protect or mitigate radiation injury is a medical necessity. In our well-established murine model of H-ARS we have demonstrated that the prostaglandin E2 (PGE2) analog 16,16 dimethyl-PGE2 (dmPGE2) has survival efficacy as both a radioprotectant and radiomitigator. The purpose of this study was to investigate the pharmacokinetics (PK) and biodistribution of dmPGE2 when used as a radioprotector in irradiated and non-irradiated inbred C57BL/6J mice, PK in irradiated and non-irradiated Jackson Diversity Outbred (JDO) mice, and the PK profile of dmPGE2 in non-irradiated non-human primates (NHPs). The C57BL/6J and JDO mice each received a single subcutaneous (SC) dose of 35 ug of dmPGE2 and were randomized to either receive radiation 30 min later or remain non-irradiated. Plasma and tissue PK profiles were established. The NHP were dosed with 0.1 mg/kg by SC administration and the PK profile in plasma was established. The concentration time profiles were analyzed by standard non-compartmental analysis and the metrics of AUC0-Inf, AUC60-480 (AUC from 60-480 min), Cmax, and t1/2 were evaluated. AUC60-480 represents the postirradiation time frame and was used to assess radiation effect. Overall, AUC0-Inf, Cmax, and t1/2 were numerically similar between strains (C57BL/6J and JDO) when combined, regardless of exposure status (AUC0-Inf: 112.50 ng·h/ml and 114.48 ng·h/ml, Cmax: 44.53 ng/ml and 63.96 ng/ml; t1/2: 1.8 h and 1.1 h, respectively). PK metrics were numerically lower in irradiated C57BL/6J mice than in non-irradiated mice [irradiation ratio: irradiated values/non-irradiated values = 0.71 for AUC60-480 (i.e., 29% lower), and 0.6 for t1/2]. In JDO mice, the radiation ratio was 0.53 for AUC60-480 (i.e., 47% lower), and 1.7 h for t1/2. The AUC0-Inf, Cmax, and t1/2 of the NHPs were 29.20 ng·h/ml, 7.68 ng/ml, and 3.26 h, respectively. Despite the numerical differences seen between irradiated and non-irradiated groups in PK parameters, the effect of radiation on PK can be considered minimal based on current data. The biodistribution in C57BL/6J mice showed that dmPGE2 per gram of tissue was highest in the lungs, regardless of exposure status. The radiation ratio for the different tissue AUC60-480 in C57BL/6J mice ranged between 0.5-1.1 (50% lower to 10% higher). Spleen, liver and bone marrow showed close to twice lower exposures after irradiation, whereas heart had a 10% higher exposure. Based on the clearance values from mice and NHP, the estimated allometric scaling coefficient was 0.81 (95% CI: 0.75, 0.86). While slightly higher than the current literature estimates of 0.75, this scaling coefficient can be considered a reasonable estimate and can be used to scale dmPGE2 dosing from animals to humans for future trials.


Assuntos
Síndrome Aguda da Radiação , Dinoprostona , Animais , Camundongos , Síndrome Aguda da Radiação/tratamento farmacológico , Camundongos Endogâmicos C57BL , Primatas , Distribuição Tecidual
2.
Radiat Res ; 199(4): 319-335, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857032

RESUMO

The objective of the current study was to establish a mouse model of acute radiation syndrome (ARS) after total-body irradiation with 2.5% bone marrow sparing (TBI/BM2.5) that progressed to the delayed effects of acute radiation exposure, specifically pneumonitis and/or pulmonary fibrosis (DEARE-lung), in animals surviving longer than 60 days. Two hundred age and sex matched C57L/J mice were assigned to one of six arms to receive a dose of 9.5 to 13.25 Gy of 320 kV X-ray TBI/BM2.5. A sham-irradiated cohort was included as an age- and sex-matched control. Blood was sampled from the facial vein prior to irradiation and on days 5, 10, 15, 20, 25, and 30 postirradiation for hematology. Respiratory function was monitored at regular intervals throughout the in-life phase. Animals with respiratory dysfunction were administered a single 12-day tapered regimen of dexamethasone, allometrically scaled from a similar regimen in the non-human primate. All animals were monitored daily for up to 224 days postirradiation for signs of organ dysfunction and morbidity/mortality. At euthanasia due to criteria or at the study endpoint, wet lung weights were recorded, and blood sampled for hematology and serum chemistry. The left lung, heart, spleen, small and large intestine, and kidneys were processed for histopathology. A dose-response curve with the estimated lethal dose for 10-99% of animals with 95% confidence intervals was established. The median survival time was significantly prolonged in males as compared to females across the 10.25 to 12.5 Gy dose range. Animal sex played a significant role in overall survival, with males 50% less likely to expire prior to the study endpoint compared to females. All animals developed pancytopenia within the first one- to two-weeks after TBI/BM2.5 followed by a progressive recovery through day 30. Fourteen percent of animals expired during the first 30-days postirradiation due to ARS (e.g., myelosuppression, gastrointestinal tissue abnormalities), with most deaths occurring prior to day 15. Microscopic findings show the presence of radiation pneumonitis as early as day 57. At time points later than day 70, pneumonitis was consistently present in the lungs of mice and the severity was comparable across radiation dose arms. Pulmonary fibrosis was first noted at day 64 but was not consistently present and stable in severity until after day 70. Fibrosis was comparable across radiation dose arms. In conclusion, this study established a multiple organ injury mouse model that progresses through the ARS phase to DEARE-lung, characterized by respiratory dysfunction, and microscopic abnormalities consistent with radiation pneumonitis/fibrosis. The model provides a platform for future development of medical countermeasures for approval and licensure by the U.S. Food and Drug Administration under the animal rule regulatory pathway.


Assuntos
Pneumonia , Fibrose Pulmonar , Pneumonite por Radiação , Estados Unidos , Masculino , Animais , Feminino , Camundongos , Medula Óssea/efeitos da radiação , Pneumonite por Radiação/patologia , Insuficiência de Múltiplos Órgãos/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos , Fibrose
3.
Radiat Res ; 197(5): 447-458, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35119453

RESUMO

BIO 300, a suspension of synthetic genistein nanoparticles, is being developed for mitigating the delayed effects of acute radiation exposure (DEARE). The purpose of the current study was to characterize the pharmacokinetic (PK) profile of BIO 300 administered as an oral or parenteral formulation 24 h after sham-irradiation, total-body irradiation (TBI) with 2.5-5.0% bone marrow sparing (TBI/BMx), or in nonirradiated sex-matched C57BL/6J mice and non-human primates (NHP). C57BL/6J mice were randomized to the following arms in two consecutive studies: sham-TBI [400 mg/kg, oral gavage (OG)], TBI/BM2.5 (400 mg/kg, OG), sham-TBI [200 mg/kg, subcutaneous (SC) injection], TBI/BM2.5 (200 mg/kg, SC), sham-TBI (100 mg/kg, SC), or nonirradiated [200 mg/kg, intramuscular (IM) injection]. The PK profile was also established in NHP exposed to TBI/BM5.0 (100 mg/kg, BID, OG). Genistein-aglycone serum concentrations were measured in all groups using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. The PK profile demonstrates 11% and 19% reductions in Cmax and AUC0-inf, respectively, among mice administered 400 mg/kg, OG, after TBI/BM2.5 compared to the sham-TBI control arm. Administration of 200 mg/kg SC in mice exposed to TBI/BM2.5 showed a 53% increase in AUC0-inf but a 28% reduction in Cmax compared to the sham-TBI mice. The relative bioavailability of the OG route compared to the SC and IM routes in mice was 9% and 7%, respectively. After the OG route, the dose-normalized AUC0-inf was 13.37 (ng.h/mL)/(mg/kg) in TBI/BM2.5 mice compared to 6.95 (ng.h/mL)/(mg/kg) in TBI/BM5.0 NHPs. Linear regression of apparent clearances and weights of mice and NHPs yielded an allometric coefficient of 1.06. Based on these data, the effect of TBI/BMx on BIO 300 PK is considered minimal. Future studies should use SC and IM routes to maximize drug exposure when administered postirradiation. The allometric coefficient is useful in predicting therapeutic drug dose regimens across species for drug approval under the FDA animal rule.


Assuntos
Genisteína , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Camundongos , Camundongos Endogâmicos C57BL , Primatas
4.
Int J Radiat Biol ; 97(sup1): S32-S44, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32909880

RESUMO

PURPOSE: The hemorrhagic syndrome is a major cause of morbidity and mortality associated with the acute radiation syndrome (ARS). We previously characterized the dose-response relationship for total body irradiation (TBI)-induced ARS in the New Zealand White (NZW) rabbit. Thrombocytopenia, hemorrhage, and anemia were strongly associated with morbidity/mortality during the first three weeks post-TBI. The objective of the current study was to further characterize the natural history of thrombocytopenia, hemostatic dysfunction and hemorrhage in the rabbit model at a TBI dose range to induce ARS. METHODS: Fifty male NZW rabbits were randomized to receive 7.0 or 7.5 Gy of 6 MV-derived TBI. Sham-irradiated controls (n = 6) were included as a comparator. Animals were treated with minimal supportive care including pain medication, antibiotics, antipyretics for temperature >104.8 °F, and fluids for signs of dehydration. Animals were culled at pre-determined timepoints post-TBI, or for signs of imminent mortality based on pre-defined euthanasia criteria. Hematology parameters, serum chemistry, viscoelasticity of whole blood, coagulation tests, and coagulation factor activities were measured. A gross exam of vital organs was performed at necropsy. RESULTS: Findings in this study include severe neutropenia during the first week post-TBI followed by thrombocytopenia and severe acute anemia with petechial hemorrhages of the skin and hemorrhage of the vital organs during the second to third weeks post-TBI. Abnormalities in whole blood viscoelastometry were observed concurrent with thrombocytopenia and hemorrhage. Antithrombin activity was significantly elevated in animals after exposure to 7.5 Gy, but not 7.0 Gy TBI. CONCLUSIONS: The hemorrhagic syndrome in the rabbit model of TBI recapitulates the pathogenesis described in humans following accidental or deliberate exposures. The rabbit may present an alternative to the rodent model as a small animal species for characterization of the full spectrum of multiorgan injury following TBI and early testing of promising medical countermeasures.


Assuntos
Síndrome Aguda da Radiação , Trombocitopenia , Síndrome Aguda da Radiação/patologia , Animais , Hemorragia/etiologia , Masculino , Contramedidas Médicas , Coelhos , Trombocitopenia/etiologia , Irradiação Corporal Total/efeitos adversos
5.
Radiat Res ; 194(5): 544-556, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045066

RESUMO

Animal models of total-body irradiation (TBI) are used to elucidate normal tissue damage and evaluate the efficacy of medical countermeasures (MCM). The accuracy of these TBI models depends on the reproducibility of the radiation dose-response relationship for lethality, which in turn is highly dependent on robust radiation physics and dosimetry. However, the precise levels of radiation each organ absorbs can change dramatically when different photon beam qualities are used, due to the interplay between their penetration and the natural variation of animal sizes and geometries. In this study, we evaluate the effect of varying the radiation energy, namely cobalt-60 (Co-60); of similar penetration to a 4-MV polyenergetic beam), 6 MV and 15 MV, in the absorbed dose delivered by TBI to individual organs of eight Göttingen minipigs of varying weights (10.3-24.1 kg) and dimensions (17.5-25 cm width). The main organs, i.e. heart, lungs, esophagus, stomach, bowels, liver, kidneys and bladder, were contoured by an experienced radiation oncologist, and the volumetric radiation dose distribution was calculated using a commercial treatment planning system commissioned and validated for Co-60, 6-MV and 15-MV teletherapy units. The dose is normalized to the intended prescription at midline in the abdomen. For each animal and each energy, the body and organ dose volume histograms (DVHs) were computed. The results show that more penetrating photon energies produce dose distributions that are systematically and consistently more homogeneous and more uniform, both within individual organs and between different organs, across all animals. Thoracic organs (lungs, heart) received higher dose than prescribed while pelvic organs (bowel, bladder) received less dose than prescribed, due to smaller and wider separations, respectively. While these trends were slightly more pronounced in the smallest animals (10.3 kg, 19 cm abdominal width) and largest animals (>20 kg, ∼25 cm abdominal width), they were observed in all animals, including those in the 9-15 kg range typically used in MCM models. Some organs received an average absorbed dose representing <80% of prescribed dose when Co-60 was used, whereas all organs received average doses of >87% and >93% when 6 and 15 MV were used, respectively. Similarly, average dose to the thoracic organs reached as high as 125% of the intended dose with Co-60, compared to 115% for 15 MV. These results indicate that Co-60 consistently produces less uniform dose distributions in the Göttingen minipig compared to 6 and 15 MV. Moreover, heterogeneity of dose distributions for Co-60 is accentuated by anatomical and geometrical variations across various animals, leading to different absorbed dose delivered to organs for different animals. This difference in absorbed radiation organ doses, likely caused by the lower penetration of Co-60 and 6 MV compared to 15 MV, could potentially lead to different biological outcomes. While the link between the dose distribution and variation of biological outcome in the Göttingen minipig has never been explicitly studied, more pronounced dose heterogeneity within and between organs treated with Co-60 teletherapy units represents an additional confounding factor which can be easily mitigated by using a more penetrating energy.


Assuntos
Relação Dose-Resposta à Radiação , Porco Miniatura , Irradiação Corporal Total , Abdome/anatomia & histologia , Abdome/efeitos da radiação , Absorção de Radiação , Animais , Tamanho Corporal , Peso Corporal , Radioisótopos de Cobalto , Raios gama , Masculino , Modelos Animais , Especificidade de Órgãos , Aceleradores de Partículas , Pelve/anatomia & histologia , Pelve/efeitos da radiação , Fótons , Decúbito Ventral , Doses de Radiação , Tolerância a Radiação , Teleterapia por Radioisótopo/instrumentação , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Alta Energia/instrumentação , Ombro/anatomia & histologia , Ombro/efeitos da radiação , Suínos , Porco Miniatura/anatomia & histologia , Tomografia Computadorizada por Raios X
6.
Radiat Res ; 191(5): 428-438, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30870098

RESUMO

Detonation of a radiological or nuclear device in a major urban area will result in heterogenous radiation exposure, given to the significant shielding of the exposed population due to surrounding structures. Development of biodosimetry assays for triage and treatment requires knowledge of the radiation dose-volume effect for the bone marrow (BM). This proof-of-concept study was designed to quantify BM damage in the non-human primate (NHP) after exposure to one of four radiation patterns likely to occur in a radiological/nuclear attack with varying levels of BM sparing. Rhesus macaques (11 males, 12 females; 5.30-8.50 kg) were randomized by weight to one of four arms: 1. bilateral total-body irradiation (TBI); 2. unilateral TBI; 3. bilateral upper half-body irradiation (UHBI); and 4. bilateral lower half-body irradiation (LHBI). The match-point for UHBI vs. LHBI was set at 1 cm above the iliac crest. Animals were exposed to 4 Gy of 6 MV X rays. Peripheral blood samples were drawn 14 days preirradiation and at days 1, 3, 5, 7 and 14 postirradiation. Dosimetric measurements after irradiation indicated that dose to the mid-depth xiphoid was within 6% of the prescribed dose. No high-grade fever, weight loss >10%, dehydration or respiratory distress was observed. Animals in the bilateral- and unilateral TBI arms presented with hematologic changes [e.g., absolute neutrophil count (ANC) <500/ll; platelets <50,000/ll] and clinical signs/symptoms (e.g., petechiae, ecchymosis) characteristic of the acute radiation syndrome. Animals in the bilateral UHBI arm presented with myelosuppression; however, none of the animals developed severe neutropenia or thrombocytopenia (ANC remained >500/µl; platelets >50,000/µl during 14-day follow-up). In contrast, animals in the LHBI arm (1 cm above the ilieac crest to the toes) were protected against BM toxicity with no marked changes in hematological parameters and only minor gross pathology [petechiae (1/5), splenomegaly (1/5) and mild pulmonary hemorrhage (1/5)]. The model performed as expected with respect to the dose-volume effect of total versus partial-BM irradiation, e.g., increased shielding resulted in reduced BM toxicity. Shielding of the major blood-forming organs (e.g., skull, ribs, sternum, thoracic and lumbar spine) spared animals from bone marrow toxicity. These data suggest that the biological consequences of the absorbed dose are dependent on the total volume and pattern of radiation exposure.


Assuntos
Síndrome Aguda da Radiação/sangue , Testes Hematológicos , Síndrome Aguda da Radiação/patologia , Animais , Peso Corporal/efeitos da radiação , Modelos Animais de Doenças , Feminino , Macaca mulatta , Radiometria
7.
Health Phys ; 116(3): 339-353, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30281533

RESUMO

A nonhuman primate model of acute, partial-body, high-dose irradiation with minimal (2.5%) bone marrow sparing was used to assess endogenous gastrointestinal and hematopoietic recovery and the ability of Neulasta (pegylated granulocyte colony-stimulating factor) or Neupogen (granulocyte colony-stimulating factor) to enhance recovery from myelosuppression when administered at an increased interval between exposure and initiation of treatment. A secondary objective was to assess the effect of Neulasta or Neupogen on mortality and morbidity due to the hematopoietic acute radiation syndrome and concomitant gastrointestinal acute radiation syndrome. Nonhuman primates were exposed to 10.0 Gy, 6 MV, linear accelerator-derived photons delivered at 0.80 Gy min. All nonhuman primates received subject-based medical management. Nonhuman primates were dosed daily with control article (5% dextrose in water), initiated on day 1 postexposure; Neulasta (300 µg kg), administered on days 1, 8, and 15 or days 3, 10, and 17 postexposure; or Neupogen (10 µg kg), administered daily postexposure following its initiation on day 1 or day 3 until neutrophil recovery (absolute neutrophil count ≥1,000 cells µL for 3 consecutive days). Mortality in the irradiated cohorts suggested that administration of Neulasta or Neupogen on either schedule did not affect mortality due to gastrointestinal acute radiation syndrome or mitigate mortality due to hematopoietic acute radiation syndrome (plus gastrointestinal damage). Following 10.0 Gy partial-body irradiation with 2.5% bone marrow sparing, the mean duration of neutropenia (absolute neutrophil count <500 cells µL) was 22.4 d in the control cohort vs. 13.0 and 15.3 d in the Neulasta day 1, 8, 15 and day 3, 10, 17 cohorts, relative to 16.2 and 17.4 d in the Neupogen cohorts initiated on day 1 and day 3, respectively. The absolute neutrophil count nadirs were 48 cells µL in the controls; 117 cells µL and 40 cells µL in the Neulasta days 1, 8, and 15 or days 3, 10, and 17 cohorts, respectively; and 75 cells µL and 37 cells µL in the Neupogen day 1 and day 3 cohorts, respectively. Therefore, the earlier administration of Neulasta or Neupogen was more effective in this model of marginal 2.5% bone marrow sparing. The approximate 2.5% bone marrow sparing may approach the threshold for efficacy of the lineage-specific medical countermeasure. The partial-body irradiation with 2.5% bone marrow sparing model can be used to assess medical countermeasure efficacy in the context of the concomitant gastrointestinal and hematopoietic acute radiation syndrome sequelae.


Assuntos
Síndrome Aguda da Radiação/tratamento farmacológico , Medula Óssea/efeitos da radiação , Filgrastim/uso terapêutico , Trato Gastrointestinal/efeitos da radiação , Hematínicos/uso terapêutico , Hematopoese/efeitos da radiação , Polietilenoglicóis/uso terapêutico , Síndrome Aguda da Radiação/mortalidade , Animais , Medula Óssea/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Macaca mulatta , Masculino
8.
Radiat Res ; 187(3): 298-318, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28208025

RESUMO

Pneumonitis and fibrosis are potentially lethal, delayed effects of acute radiation exposure. In this study, male rhesus macaques received whole-thorax lung irradiation (WTLI) with a target dose of 10.74 Gy prescribed to midplane at a dose rate of 0.80 ± 0.05 Gy/min using 6 MV linear accelerator-derived photons. The study design was comprised of four animal cohorts: one control and three treated with AEOL 10150 (n = 20 animals per cohort). AEOL 10150, a metalloporphyrin antioxidant, superoxide dismutase mimetic was administered by daily subcutaneous injection at 5 mg/kg in each of three schedules, beginning 24 ± 2 h postirradiation: from day 1 to day 28, day 1 to day 60 or a divided regimen from day 1 to day 28 plus day 60 to day 88. Control animals received 0.9% saline injections from day 1 to day 28. All animals received medical management and were followed for 180 days. Computed tomography (CT) scan and baseline hematology values were assessed prior to WTLI. Postirradiation monthly CT scans were collected, and images were analyzed for evidence of lung injury (pneumonitis, fibrosis, pleural and pericardial effusion) based on differences in radiodensity characteristics of the normal versus damaged lung. The primary end point was survival to 180 days based on all-cause mortality. The latency, incidence and severity of lung injury were assessed through clinical, radiographic and histological parameters. A clear survival relationship was observed with the AEOL 10150 treatment schedule and time after lethal WTLI. The day 1-60 administration schedule increased survival from 25 to 50%, mean survival time of decedents and the latency to nonsedated respiratory rate to >60 or >80 breaths/min and diminished quantitative radiographic lung injury as determined by CT scans. It did not affect incidence or severity of pneumonitis/fibrosis as determined by histological evaluation, pleural effusion or pericardial effusion as determined by CT scans. Analysis of the Kaplan-Meier survival curves suggested that treatment efficacy could be increased by extending the treatment schedule to 90 days or longer after WTLI. No survival improvement was noted in the AEOL 10150 cohorts treated from day 1-28 or using the divided schedule of day 1-28 plus day 60-88. These results suggest that AEOL 10150 may be an effective medical countermeasure against severe and lethal radiation-induced lung injury.


Assuntos
Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/mortalidade , Metaloporfirinas/administração & dosagem , Metaloporfirinas/farmacologia , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/mortalidade , Animais , Relação Dose-Resposta à Radiação , Esquema de Medicação , Estimativa de Kaplan-Meier , Macaca mulatta , Masculino , Metaloporfirinas/uso terapêutico , Morbidade , Fatores de Tempo
9.
Sci Rep ; 6: 23612, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27029502

RESUMO

Cachexia, or muscle wasting, is a serious health threat to victims of radiological accidents or patients receiving radiotherapy. Here, we propose a non-human primate (NHP) radiation-induced cachexia model based on clinical and molecular pathology findings. NHP exposed to potentially lethal partial-body irradiation developed symptoms of cachexia such as body weight loss in a time- and dose-dependent manner. Severe body weight loss as high as 20-25% was observed which was refractory to nutritional intervention. Radiographic imaging indicated that cachectic NHP lost as much as 50% of skeletal muscle. Histological analysis of muscle tissues showed abnormalities such as presence of central nuclei, inflammation, fatty replacement of skeletal muscle, and muscle fiber degeneration. Biochemical parameters such as hemoglobin and albumin levels decreased after radiation exposure. Levels of FBXO32 (Atrogin-1), ActRIIB and myostatin were significantly changed in the irradiated cachectic NHP compared to the non-irradiated NHP. Our data suggest NHP that have been exposed to high dose radiation manifest cachexia-like symptoms in a time- and dose-dependent manner. This model provides a unique opportunity to study the mechanism of radiation-induced cachexia and will aid in efficacy studies of mitigators of this disease.


Assuntos
Caquexia/veterinária , Raios gama/efeitos adversos , Músculo Esquelético/efeitos da radiação , Atrofia Muscular/veterinária , Redução de Peso/efeitos da radiação , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animais , Caquexia/etiologia , Caquexia/genética , Caquexia/patologia , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica , Hemoglobinas/metabolismo , Humanos , Macaca mulatta , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Miostatina/genética , Miostatina/metabolismo , Estudos Retrospectivos , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Albumina Sérica/metabolismo , Fatores de Tempo
10.
Health Phys ; 109(5): 374-90, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26425899

RESUMO

Exposure to sufficiently high doses of ionizing radiation is known to cause fibrosis in many different organs and tissues. Connective tissue growth factor (CTGF/CCN2), a member of the CCN family of matricellular proteins, plays an important role in the development of fibrosis in multiple organs. The aim of the present study was to quantify the gene and protein expression of CTGF in a variety of organs from non-human primates (NHP) that were previously exposed to potentially lethal doses of radiation. Tissues from non-irradiated NHP and NHP exposed to whole thoracic lung irradiation (WTLI) or partial-body irradiation with 5% bone marrow sparing (PBI/BM5) were examined by real-time quantitative reverse transcription PCR, western blot, and immunohistochemistry. Expression of CTGF was elevated in the lung tissues of NHP exposed to WTLI relative to the lung tissues of the non-irradiated NHP. Increased expression of CTGF was also observed in multiple organs from NHP exposed to PBI/BM5 compared to non-irradiated NHP; these included the lung, kidney, spleen, thymus, and liver. These irradiated organs also exhibited histological evidence of increased collagen deposition compared to the control tissues. There was significant correlation of CTGF expression with collagen deposition in the lung and spleen of NHP exposed to PBI/BM5. Significant correlations were observed between spleen and multiple organs on CTGF expression and collagen deposition, respectively, suggesting possible crosstalk between spleen and other organs. These data suggest that CTGF levels are increased in multiple organs after radiation exposure and that inflammatory cell infiltration may contribute to the elevated levels of CTGF in multiple organs.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/biossíntese , Modelos Animais de Doenças , Exposição à Radiação/análise , Radiometria/métodos , Vísceras/metabolismo , Vísceras/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Humanos , Dose Letal Mediana , Macaca mulatta , Masculino , Especificidade de Órgãos/fisiologia , Regulação para Cima/efeitos da radiação
11.
Health Phys ; 109(5): 427-39, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26425903

RESUMO

A nonhuman primate (NHP) model of acute high-dose, partial-body irradiation with 5% bone marrow (PBI/BM5) sparing was used to assess the effect of Neupogen® [granulocyte colony stimulating factor (G-CSF)] to mitigate the associated myelosuppression when administered at an increasing interval between exposure and initiation of treatment. A secondary objective was to assess the effect of Neupogen® on the mortality or morbidity of the hematopoietic (H)- acute radiation syndrome (ARS) and concurrent acute gastrointestinal radiation syndrome (GI-ARS). NHP were exposed to 10.0 or 11.0 Gy with 6 MV LINAC-derived photons at approximately 0.80 Gy min. All NHP received medical management. NHP were dosed daily with control article (5% dextrose in water) initiated on day 1 post-exposure or Neupogen® (10 µg kg) initiated on day 1, day 3, or day 5 until recovery [absolute neutrophil count (ANC) ≥ 1,000 cells µL for three consecutive days]. Mortality in both the 10.0 Gy and 11.0 Gy cohorts suggested that early administration of Neupogen® at day 1 post exposure may affect acute GI-ARS mortality, while Neupogen® appeared to mitigate mortality due to the H-ARS. However, the study was not powered to detect statistically significant differences in survival. The ability of Neupogen® to stimulate granulopoiesis was assessed by evaluating key parameters for ANC recovery: the depth of nadir, duration of neutropenia (ANC < 500 cells µL) and recovery time to ANC ≥ 1,000 cells µL. Following 10.0 Gy PBI/BM5, the mean duration of neutropenia was 11.6 d in the control cohort vs. 3.5 d and 4.6 d in the day 1 and day 3 Neupogen® cohorts, respectively. The respective ANC nadirs were 94 cells µL, 220 cells µL, and 243 cells µL for the control and day 1 and day 3 Neupogen® cohorts. Following 11.0 Gy PBI/BM5, the duration of neutropenia was 10.9 d in the control cohort vs. 2.8 d, 3.8 d, and 4.5 d in the day 1, day 3, and day 5 Neupogen® cohorts, respectively. The respective ANC nadirs for the control and day 1, day 3, and day 5 Neupogen® cohorts were 131 cells µL, 292 cells µL, 236 cells µL, and 217 cells µL, respectively. Therefore, the acceleration of granulopoiesis by Neupogen® in this model is independent of the time interval between radiation exposure and treatment initiation up to 5 d post-exposure. The PBI/BM5 model can be used to assess medical countermeasure efficacy in the context of the concurrent GI- and H-ARS.


Assuntos
Síndrome Aguda da Radiação/prevenção & controle , Síndrome Aguda da Radiação/fisiopatologia , Medula Óssea/efeitos da radiação , Modelos Animais de Doenças , Filgrastim/administração & dosagem , Síndrome Aguda da Radiação/diagnóstico , Animais , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Esquema de Medicação , Humanos , Macaca mulatta , Masculino , Tratamentos com Preservação do Órgão/métodos , Doses de Radiação , Protetores contra Radiação/uso terapêutico , Resultado do Tratamento
12.
Radiat Res ; 183(6): 643-55, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26035709

RESUMO

Leukocyte growth factors (LGF), such as filgrastim, pegfilgrastim and sargramostim, have been used to mitigate the hematologic symptoms of acute radiation syndrome (ARS) after radiation accidents. Although these pharmaceuticals are currently approved for treatment of chemotherapy-induced myelosuppression, such approval has not been granted for myelosuppression resulting from acute radiation exposure. Regulatory approval of drugs used to treat radiological or nuclear exposure injuries requires their development and testing in accordance with the Animal Efficacy Rule, set forth by the U.S. Food and Drug Administration. To date, filgrastim is the only LGF that has undergone efficacy assessment conducted under the Animal Efficacy Rule. To confirm the efficacy of another LGF with a shorter dosing regimen compared to filgrastim, we evaluated the use of pegfilgrastim (Neulasta(®)) in a lethal nonhuman primate (NHP) model of hematopoietic acute radiation syndrome (H-ARS). Rhesus macaques were exposed to 7.50 Gy total-body irradiation (the LD(50/60)), delivered at 0.80 Gy/min using linear accelerator 6 MV photons. Pegfilgrastim (300 µg/kg, n = 23) or 5% dextrose in water (n = 23) was administered on day 1 and 8 postirradiation and all animals received medical management. Hematologic and physiologic parameters were evaluated for 60 days postirradiation. The primary, clinically relevant end point was survival to day 60; secondary end points included hematologic-related parameters. Pegfilgrastim significantly (P = 0.0014) increased 60 day survival to 91.3% (21/23) from 47.8% (11/23) in the control. Relative to the controls, pegfilgrastim also significantly: 1. decreased the median duration of neutropenia and thrombocytopenia; 2. improved the median time to recovery of absolute neutrophil count (ANC) ≥500/µL, ANC ≥1,000/µL and platelet (PLT) count ≥20,000/µL; 3. increased the mean ANC at nadir; and 4. decreased the incidence of Gram-negative bacteremia. These data demonstrate that pegfilgrastim is an additional medical countermeasure capable of increasing survival and neutrophil-related parameters when administered in an abbreviated schedule to a NHP model of lethal H-ARS.


Assuntos
Fator Estimulador de Colônias de Granulócitos/farmacologia , Protetores contra Radiação/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Bacteriemia/etiologia , Bacteriemia/prevenção & controle , Peso Corporal/efeitos dos fármacos , Peso Corporal/efeitos da radiação , Desidratação/etiologia , Desidratação/prevenção & controle , Diarreia/etiologia , Diarreia/prevenção & controle , Filgrastim , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Dose Letal Mediana , Macaca mulatta , Masculino , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos da radiação , Polietilenoglicóis , Postura , Proteínas Recombinantes/farmacologia , Análise de Sobrevida , Trombocitopenia/etiologia , Trombocitopenia/prevenção & controle , Fatores de Tempo , Irradiação Corporal Total/efeitos adversos
13.
Health Phys ; 109(5): 466-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26425906

RESUMO

Radiation-induced lung injury is highly complex and characterized by multiple pathologies, which occur over time and sporadically throughout the lung. This complexity makes biomarker investigations and medical countermeasure screenings challenging. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has the ability to resolve differences spatially in molecular profiles within the lung following radiation exposure and can aid in biomarker identification and pharmaceutical efficacy investigations. MALDI-MSI was applied to the investigation of a whole-thorax lung irradiation model in non-human primates (NHP) for lipidomic analysis and medical countermeasure distribution.


Assuntos
Lipídeos/análise , Lesão Pulmonar/metabolismo , Lesão Pulmonar/prevenção & controle , Lesões por Radiação/metabolismo , Lesões por Radiação/prevenção & controle , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Biomarcadores/análise , Relação Dose-Resposta a Droga , Lesão Pulmonar/diagnóstico , Macaca mulatta , Masculino , Metaloporfirinas/administração & dosagem , Lesões por Radiação/diagnóstico , Protetores contra Radiação/administração & dosagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
14.
Health Phys ; 106(1): 39-47, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24276548

RESUMO

The identification of the optimal administration schedule for an effective medical countermeasure is critical for the effective treatment of individuals exposed to potentially lethal doses of radiation. The efficacy of filgrastim (Neupogen®), a potential medical countermeasure, to improve survival when initiated at 48 h following total body irradiation in a non-human primate model of the hematopoietic syndrome of the acute radiation syndrome was investigated. Animals were exposed to total body irradiation, antero-posterior exposure, total midline tissue dose of 7.5 Gy, (target lethal dose 50/60) delivered at 0.80 Gy min, using linear accelerator-derived 6 MV photons. All animals were administered medical management. Following irradiation on day 0, filgrastim (10 µg kg d) or the control (5% dextrose in water) was administered subcutaneously daily through effect (absolute neutrophil count ≥ 1,000 cells µL for three consecutive days). The study (n = 80) was powered to demonstrate a 25% improvement in survival following the administration of filgrastim or control beginning at 48 ± 4 h post-irradiation. Survival analysis was conducted on the intention-to-treat population using a two-tailed null hypothesis at a 5% significance level. Filgrastim, initiated 48 h after irradiation, did not improve survival (2.5% increase, p = 0.8230). These data demonstrate that efficacy of a countermeasure to mitigate lethality in the hematopoietic syndrome of the acute radiation syndrome can be dependent on the interval between irradiation and administration of the medical countermeasure.


Assuntos
Fator Estimulador de Colônias de Granulócitos/farmacologia , Irradiação Corporal Total/efeitos adversos , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/efeitos da radiação , Eritrócitos/efeitos dos fármacos , Eritrócitos/efeitos da radiação , Filgrastim , Dose Letal Mediana , Macaca mulatta , Masculino , Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos da radiação , Proteínas Recombinantes/farmacologia , Taxa de Sobrevida , Fatores de Tempo
15.
Health Phys ; 106(1): 56-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24276550

RESUMO

Several radiation dose- and time-dependent tissue sequelae develop following acute high-dose radiation exposure. One of the recognized delayed effects of such exposures is lung injury, characterized by respiratory failure as a result of pneumonitis that may subsequently develop into lung fibrosis. Since this pulmonary subsyndrome may be associated with high morbidity and mortality, comprehensive treatment following high-dose irradiation will ideally include treatments that mitigate both the acute hematologic and gastrointestinal subsyndromes as well as the delayed pulmonary syndrome. Currently, there are no drugs approved by the Food and Drug Administration to counteract the effects of acute radiation exposure. Moreover, there are no relevant large animal models of radiation-induced lung injury that permit efficacy testing of new generation medical countermeasures in combination with medical management protocols under the FDA animal rule criteria. Herein is described a nonhuman primate model of delayed lung injury resulting from whole thorax lung irradiation. Rhesus macaques were exposed to 6 MV photon radiation over a dose range of 9.0-12.0 Gy and medical management administered according to a standardized treatment protocol. The primary endpoint was all-cause mortality at 180 d. A comparative multiparameter analysis is provided, focusing on the lethal dose response relationship characterized by a lethal dose50/180 of 10.27 Gy [9.88, 10.66] and slope of 1.112 probits per linear dose. Latency, incidence, and severity of lung injury were evaluated through clinical and radiographic parameters including respiratory rate, saturation of peripheral oxygen, corticosteroid requirements, and serial computed tomography. Gross anatomical and histological analyses were performed to assess radiation-induced injury. The model defines the dose response relationship and time course of the delayed pulmonary sequelae and consequent morbidity and mortality. Therefore, it may provide an effective platform for the efficacy testing of candidate medical countermeasures against the delayed pulmonary syndrome.


Assuntos
Modelos Animais de Doenças , Pulmão/efeitos da radiação , Doses de Radiação , Lesões Experimentais por Radiação , Pneumonite por Radiação , Animais , Dexametasona/farmacologia , Relação Dose-Resposta à Radiação , Fibrose , Testes Hematológicos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Macaca mulatta , Masculino , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/efeitos da radiação , Oxigênio/metabolismo , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/fisiopatologia , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/patologia , Pneumonite por Radiação/fisiopatologia , Respiração/efeitos dos fármacos , Respiração/efeitos da radiação , Taxa de Sobrevida , Tórax/efeitos da radiação , Fatores de Tempo , Tomografia Computadorizada por Raios X
16.
Health Phys ; 106(1): 73-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24276551

RESUMO

The objective of this pilot study was to explore whether administration of a catalytic antioxidant, AEOL 10150 (C48H56C15MnN12), could reduce radiation-induced lung injury and improve overall survival when administered after 11.5 Gy of whole thorax lung irradiation in a non-human primate model. Thirteen animals were irradiated with a single exposure of 11.5 Gy, prescribed to midplane, and delivered with 6 MV photons at a dose rate of 0.8 Gy min. Beginning at 24 h post irradiation, the AEOL 10150 cohort (n = 7) received daily subcutaneous injections of the catalytic antioxidant at a concentration of 5 mg kg for a total of 4 wk. All animals received medical management, including dexamethasone, based on clinical signs during the planned 180-d in-life phase of the study. All decedent study animals were euthanized for failure to maintain saturation of peripheral oxygen > 88% on room air. Exposure of the whole thorax to 11.5 Gy resulted in radiation-induced lung injury in all animals. AEOL 10150, as administered in this pilot study, demonstrated potential efficacy as a mitigator against fatal radiation-induced lung injury. Treatment with the drug resulted in 28.6% survival following exposure to a radiation dose that proved to be 100% fatal in the control cohort (n = 6). Computed tomography scans demonstrated less quantitative radiographic injury (pneumonitis, fibrosis, effusions) in the AEOL 10150-treated cohort at day 60 post-exposure, and AEOL 10150-treated animals required less dexamethasone support during the in-life phase of the study. Analysis of serial plasma samples suggested that AEOL 10150 treatment led to lower relative transforming growth factor-Beta-1 levels when compared with the control animals. The results of this pilot study demonstrate that treatment with AEOL 10150 results in reduced clinical, radiographic, anatomic, and molecular evidence of radiation-induced lung injury and merits further study as a medical countermeasure against radiation-induced pulmonary injury.


Assuntos
Antioxidantes/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/efeitos da radiação , Metaloporfirinas/farmacologia , Lesões Experimentais por Radiação/tratamento farmacológico , Protetores contra Radiação/farmacologia , Animais , Antioxidantes/administração & dosagem , Antioxidantes/química , Antioxidantes/uso terapêutico , Catálise , Dexametasona/farmacologia , Pulmão/patologia , Pulmão/fisiopatologia , Macaca mulatta , Masculino , Metaloporfirinas/administração & dosagem , Metaloporfirinas/química , Metaloporfirinas/uso terapêutico , Peso Molecular , Oxigênio/metabolismo , Projetos Piloto , Lesões Experimentais por Radiação/sangue , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/fisiopatologia , Pneumonite por Radiação/sangue , Pneumonite por Radiação/tratamento farmacológico , Pneumonite por Radiação/patologia , Pneumonite por Radiação/fisiopatologia , Protetores contra Radiação/administração & dosagem , Protetores contra Radiação/química , Protetores contra Radiação/uso terapêutico , Respiração/efeitos dos fármacos , Respiração/efeitos da radiação , Taxa de Sobrevida , Tomografia Computadorizada por Raios X , Fator de Crescimento Transformador beta1/sangue
17.
Radiat Res ; 179(1): 89-100, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23210705

RESUMO

Treatment of individuals exposed to potentially lethal doses of radiation is of paramount concern to health professionals and government agencies. We evaluated the efficacy of filgrastim to increase survival of nonhuman primates (NHP) exposed to an approximate mid-lethal dose (LD(50/60)) (7.50 Gy) of LINAC-derived photon radiation. Prior to total-body irradiation (TBI), nonhuman primates were randomized to either a control (n = 22) or filgrastim-treated (n = 24) cohorts. Filgrastim (10 µg/kg/d) was administered beginning 1 day after TBI and continued daily until the absolute neutrophil count (ANC) was >1,000/µL for 3 consecutive days. All nonhuman primates received medical management as per protocol. The primary end point was all cause overall mortality over the 60 day in-life study. Secondary end points included mean survival time of decedents and all hematologic-related parameters. Filgrastim significantly (P < 0.004) reduced 60 day overall mortality [20.8% (5/24)] compared to the controls [59.1% (13/22)]. Filgrastim significantly decreased the duration of neutropenia, but did not affect the absolute neutrophil count nadir. Febrile neutropenia (ANC <500/µL and body temperature ≥ 103°F) was experienced by 90.9% (20/22) of controls compared to 79.2% (19/24) of filgrastim-treated animals (P = 0.418). Survival was significantly increased by 38.3% over controls. Filgrastim, administered at this dose and schedule, effectively mitigated the lethality of the hematopoietic subsyndrome of the acute radiation syndrome.


Assuntos
Fator Estimulador de Colônias de Granulócitos/farmacologia , Protetores contra Radiação/farmacologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/efeitos da radiação , Transfusão de Sangue , Diarreia/tratamento farmacológico , Feminino , Filgrastim , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Macaca mulatta , Masculino , Neutropenia/microbiologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos da radiação , Protetores contra Radiação/administração & dosagem , Protetores contra Radiação/uso terapêutico , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA