Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(14): 4495-500, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25805816

RESUMO

With-no-lysine kinase 4 (WNK4) inhibits the activity of the potassium channel KCNJ1 (ROMK) in the distal nephron, thereby contributing to the maintenance of potassium homeostasis. This effect is inhibited via phosphorylation at Ser1196 by serum/glucocorticoid-induced kinase 1 (SGK1), and this inhibition is attenuated by the Src-family protein tyrosine kinase (SFK). Using Western blot and mass spectrometry, we now identify three sites in WNK4 that are phosphorylated by c-Src: Tyr(1092), Tyr(1094), and Tyr(1143), and show that both c-Src and protein tyrosine phosphatase type 1D (PTP-1D) coimmunoprecipitate with WNK4. Mutation of Tyr(1092) or Tyr(1143) to phenylalanine decreased the association of c-Src or PTP-1D with WNK4, respectively. Moreover, the Tyr1092Phe mutation markedly reduced ROMK inhibition by WNK4; this inhibition was completely absent in the double mutant WNK4(Y1092/1094F). Similarly, c-Src prevented SGK1-induced phosphorylation of WNK4 at Ser(1196), an effect that was abrogated in the double mutant. WNK4(Y1143F) inhibited ROMK activity as potently as wild-type (WT) WNK4, but unlike WT, the inhibitory effect of WNK4(Y1143F) could not be reversed by SGK1. The failure to reverse WNK4(Y1143F)-induced inhibition of ROMK by SGK1 was possibly due to enhancing endogenous SFK effect on WNK4 by decreasing the WNK4-PTP-1D association because inhibition of SFK enabled SGK1 to reverse WNK4(Y1143F)-induced inhibition of ROMK. We conclude that WNK4 is a substrate of SFKs and that the association of c-Src and PTP-1D with WNK4 at Tyr(1092) and Tyr(1143) plays an important role in modulating the inhibitory effect of WNK4 on ROMK.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases da Família src/metabolismo , Animais , Sítios de Ligação , Cromatografia Líquida , Eletrofisiologia , Células HEK293 , Humanos , Hiperpotassemia/metabolismo , Hipopotassemia/metabolismo , Camundongos , Mutação , Néfrons/metabolismo , Fosforilação , Ratos , Espectrometria de Massas em Tandem , Titânio/química , Tirosina/química
2.
J Biol Chem ; 291(10): 5259-69, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26728465

RESUMO

Romk knock-out mice show a similar phenotype to Bartter syndrome of salt wasting and dehydration due to reduced Na-K-2Cl-cotransporter activity. At least three ROMK isoforms have been identified in the kidney; however, unique functions of any of the isoforms in nephron segments are still poorly understood. We have generated a mouse deficient only in Romk1 by selective deletion of the Romk1-specific first exon using an ES cell Cre-LoxP strategy and examined the renal phenotypes, ion transporter expression, ROMK channel activity, and localization under normal and high K intake. Unlike Romk(-/-) mice, there was no Bartter phenotype with reduced NKCC2 activity and increased NCC expression in Romk1(-/-) mice. The small conductance K channel (SK) activity showed no difference of channel properties or gating in the collecting tubule between Romk1(+/+) and Romk1(-/-) mice. High K intake increased SK channel number per patch and increased the ROMK channel intensity in the apical membrane of the collecting tubule in Romk1(+/+), but such regulation by high K intake was diminished with significant hyperkalemia in Romk1(-/-) mice. We conclude that 1) animal knockouts of ROMK1 do not produce Bartter phenotype. 2) There is no functional linking of ROMK1 and NKCC2 in the TAL. 3) ROMK1 is critical in response to high K intake-stimulated K(+) secretion in the collecting tubule.


Assuntos
Síndrome de Bartter/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Animais , Células Cultivadas , Deleção de Genes , Ativação do Canal Iônico , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Camundongos , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
3.
Proc Natl Acad Sci U S A ; 111(32): 11864-9, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071208

RESUMO

The renal phenotype induced by loss-of-function mutations of inwardly rectifying potassium channel (Kir), Kcnj10 (Kir4.1), includes salt wasting, hypomagnesemia, metabolic alkalosis and hypokalemia. However, the mechanism by which Kir.4.1 mutations cause the tubulopathy is not completely understood. Here we demonstrate that Kcnj10 is a main contributor to the basolateral K conductance in the early distal convoluted tubule (DCT1) and determines the expression of the apical Na-Cl cotransporter (NCC) in the DCT. Immunostaining demonstrated Kcnj10 and Kcnj16 were expressed in the basolateral membrane of DCT, and patch-clamp studies detected a 40-pS K channel in the basolateral membrane of the DCT1 of p8/p10 wild-type Kcnj10(+/+) mice (WT). This 40-pS K channel is absent in homozygous Kcnj10(-/-) (knockout) mice. The disruption of Kcnj10 almost completely eliminated the basolateral K conductance and decreased the negativity of the cell membrane potential in DCT1. Moreover, the lack of Kcnj10 decreased the basolateral Cl conductance, inhibited the expression of Ste20-related proline-alanine-rich kinase and diminished the apical NCC expression in DCT. We conclude that Kcnj10 plays a dominant role in determining the basolateral K conductance and membrane potential of DCT1 and that the basolateral K channel activity in the DCT determines the apical NCC expression possibly through a Ste20-related proline-alanine-rich kinase-dependent mechanism.


Assuntos
Túbulos Renais Distais/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Imuno-Histoquímica , Potenciais da Membrana , Camundongos , Camundongos Knockout , Modelos Biológicos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Canal Kir5.1
4.
Annu Rev Physiol ; 73: 1-28, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20690822

RESUMO

This essay provides a summary of my professional activities. My interest in renal physiology started as a medical student in Vienna, when I became acquainted with Homer Smith's essays on kidney function. After moving to the United States in 1951, I was fortunate to be mentored by Robert Pitts, in whose Department of Physiology at Cornell Medical College in New York I was given early independence, intellectual stimulation, and the opportunity to pursue experiments on single renal tubules. The problem of how the nephron manages its myriad of transport functions has never lost its fascination for me, and I am profoundly grateful to the many colleagues at Cornell Medical College and at Yale University School of Medicine who shared my passion for the kidney.


Assuntos
Túbulos Renais/fisiologia , Equilíbrio Ácido-Base/fisiologia , Animais , Feminino , História do Século XX , História do Século XXI , Humanos , Masculino , Camundongos , Canais de Potássio/fisiologia , Ratos , Canais de Sódio/fisiologia , Água/fisiologia
5.
J Am Soc Nephrol ; 29(8): 2029-2030, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29986871
6.
Proc Natl Acad Sci U S A ; 107(13): 6082-7, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20231442

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in many segments of the mammalian nephron, where it may interact with and modulate the activity of a variety of apical membrane proteins, including the renal outer medullary potassium (ROMK) K(+) channel. However, the expression of CFTR in apical cell membranes or its function as a Cl(-) channel in native renal epithelia has not been demonstrated. Here, we establish that CFTR forms protein kinase A (PKA)-activated Cl(-) channels in the apical membrane of principal cells from the cortical collecting duct obtained from mice. These Cl(-) channels were observed in cell-attached apical patches of principal cells after stimulation by forskolin/3-isobutyl-1-methylxanthine. Quiescent Cl(-) channels were present in patches excised from untreated tubules because they could be activated after exposure to Mg-ATP and the catalytic subunit of PKA. The single-channel conductance, kinetics, and anion selectivity of these Cl(-) channels were the same as those of recombinant mouse CFTR channels expressed in Xenopus laevis oocytes. The CFTR-specific closed-channel blocker CFTR(inh)-172 abolished apical Cl(-) channel activity in excised patches. Moreover, apical Cl(-) channel activity was completely absent in principal cells from transgenic mice expressing the DeltaF508 CFTR mutation but was present and unaltered in ROMK-null mice. We discuss the physiologic implications of open CFTR Cl(-) channels on salt handling by the collecting duct and on the functional CFTR-ROMK interactions in modulating the metabolic ATP-sensing of ROMK.


Assuntos
Canais de Cloreto/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Túbulos Renais Coletores/metabolismo , Animais , Benzoatos/farmacologia , Canais de Cloreto/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Técnicas In Vitro , Córtex Renal/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Camundongos Knockout , Camundongos Transgênicos , Mutação , Oócitos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiazolidinas/farmacologia , Xenopus laevis
7.
Nat Genet ; 35(4): 372-6, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14608358

RESUMO

A key question in systems biology is how diverse physiologic processes are integrated to produce global homeostasis. Genetic analysis can contribute by identifying genes that perturb this integration. One system orchestrates renal NaCl and K+ flux to achieve homeostasis of blood pressure and serum K+ concentration. Positional cloning implicated the serine-threonine kinase WNK4 in this process; clustered mutations in PRKWNK4, encoding WNK4, cause hypertension and hyperkalemia (pseudohypoaldosteronism type II, PHAII) by altering renal NaCl and K+ handling. Wild-type WNK4 inhibits the renal Na-Cl cotransporter (NCCT); mutations that cause PHAII relieve this inhibition. This explains the hypertension of PHAII but does not account for the hyperkalemia. By expression in Xenopus laevis oocytes, we show that WNK4 also inhibits the renal K+ channel ROMK. This inhibition is independent of WNK4 kinase activity and is mediated by clathrin-dependent endocytosis of ROMK, mechanisms distinct from those that characterize WNK4 inhibition of NCCT. Most notably, the same mutations in PRKWNK4 that relieve NCCT inhibition markedly increase inhibition of ROMK. These findings establish WNK4 as a multifunctional regulator of diverse ion transporters; moreover, they explain the pathophysiology of PHAII. They also identify WNK4 as a molecular switch that can vary the balance between NaCl reabsorption and K+ secretion to maintain integrated homeostasis.


Assuntos
Rim/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Receptores de Droga , Cloreto de Sódio/metabolismo , Simportadores , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Clatrina/metabolismo , Endocitose , Proteínas de Fluorescência Verde , Transporte de Íons , Proteínas Luminescentes/metabolismo , Camundongos , Canais de Potássio/metabolismo , Pseudo-Hipoaldosteronismo/metabolismo , Ratos , Simportadores de Cloreto de Sódio , Membro 3 da Família 12 de Carreador de Soluto , Xenopus laevis/metabolismo
8.
Proc Natl Acad Sci U S A ; 106(35): 15061-6, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19706464

RESUMO

WNK4 (with no lysine kinase 4) inhibits ROMK channel activity in the distal nephron by stimulating clathrin-dependent endocytosis, an effect attenuated by SGK1 (serum-glucocorticoids-induced kinase)-mediated phosphorylation. It has been suggested that increased ROMK activity because of SGK1-mediated inhibition of WNK4 plays a role in promoting renal K secretion in response to elevated serum K or high K (HK) intake. In contrast, intravascular volume depletion also increases SGK1 activity but fails to stimulate ROMK channels and K secretion. Because HK intake decreases Src family protein tyrosine kinase (PTK) activity an inhibitor of ROMK channels, it is possible that Src family PTK may modulate the effects of SGK1 on WNK4. Here, we show that c-Src prevents SGK1 from attenuating WNK4's inhibition of ROMK activity. This effect of c-Src was WNK4-dependent because c-Src had no effect on ROMK harboring mutation at the site of c-Src phosphorylation (R1Y337A) in the absence of WNK4. Moreover, expression c-Src diminished the SGK1-mediated increase in serine phosphorylation of WNK4, suggesting that c-Src enhances WNK4-mediated inhibition of ROMK channels by suppressing the SGK1-induced phosphorylation. This notion is also supported by the observation that c-Src was not able to modulate the interaction between SGK1 and WNK4 mutants (WNK4(S1169A) or WNK4(S1169D)) in which an SGK1-phosphorylation site (serine 1169) was mutated by alanine or aspartate. We conclude that c-Src inhibits SGK1-mediated phosphorylation hereby restoring the WNK4-mediated inhibition of ROMK channels thus suppressing K secretion.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases da Família src/metabolismo , Linhagem Celular , Fenômenos Eletrofisiológicos , Humanos , Técnicas de Patch-Clamp , Fosfosserina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética
9.
J Am Soc Nephrol ; 22(11): 1981-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21980112

RESUMO

Maintenance of extracellular K(+) concentration within a narrow range is vital for numerous cell functions, particularly electrical excitability of heart and muscle. Potassium homeostasis during intermittent ingestion of K(+) involves rapid redistribution of K(+) into the intracellular space to minimize increases in extracellular K(+) concentration, and ultimate elimination of the K(+) load by renal excretion. Recent years have seen great progress in identifying the transporters and channels involved in renal and extrarenal K(+) homeostasis. Here we apply these advances in molecular physiology to understand how acid-base disturbances affect serum potassium.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Homeostase/fisiologia , Rim/fisiologia , Canais de Potássio/fisiologia , Potássio/fisiologia , Acidose/fisiopatologia , Animais , Humanos , Concentração de Íons de Hidrogênio , Hiperpotassemia/fisiopatologia , Músculo Esquelético/fisiologia , Potássio/sangue , Potássio/urina , Trocadores de Sódio-Hidrogênio/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia
10.
Cell Physiol Biochem ; 28(3): 513-20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22116365

RESUMO

Intercalated cells in the collecting duct system express V-type H(+)-ATPases which participate in acid extrusion, bicarbonate secretion, and chloride absorption depending on the specific subtype. The activity of H(+)-ATPases is regulated by acid-base status and several hormones, including angiotensin II and aldosterone. Angiotensin II stimulates chloride absorption mediated by pendrin in type B intercalated cells and this process is energized by the activity of H(+)-ATPases. Moreover, angiotensin II stimulates bicarbonate secretion by the connecting tubule (CNT) and early cortical collecting duct (CCD). In the present study we examined the effect of angiotensin II (10 nM) on H(+)-ATPase activity and localization in isolated mouse connecting tubules and cortical collecting ducts. Angiotensin II stimulated Na(+)-independent intracellular pH recovery about 2-3 fold, and this was abolished by the specific H(+)-ATPase inhibitor concanamycin. The effect of angiotensin II was mediated through type 1 angiotensin II receptors (AT(1)-receptors) because it could be blocked by saralasin. Stimulation of H(+)-ATPase activity required an intact microtubular network--it was completely inhibited by colchicine. Immunocytochemistry of isolated CNT/CCDs incubated in vitro with angiotensin II suggests enhanced membrane associated staining of H(+)-ATPases in pendrin expressing intercalated cells. In summary, angiotensin II stimulates H(+)-ATPases in CNT/CCD intercalated cells, and may contribute to the regulation of chloride absorption and bicarbonate secretion in this nephron segment.


Assuntos
Angiotensina II/farmacologia , Córtex Renal/enzimologia , Túbulos Renais Coletores/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Proteínas de Transporte de Ânions/metabolismo , Bicarbonatos/metabolismo , Membrana Celular/metabolismo , Cloretos/metabolismo , Colchicina/farmacologia , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Córtex Renal/citologia , Córtex Renal/patologia , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/patologia , Macrolídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Angiotensina/química , Receptores de Angiotensina/metabolismo , Saralasina/farmacologia , Sódio/metabolismo , Transportadores de Sulfato , ATPases Vacuolares Próton-Translocadoras/análise , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores
11.
J Biol Chem ; 284(43): 29614-24, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19710010

RESUMO

POSH (plenty of SH3) is a scaffold protein that has been shown to act as an E3 ubiquitin ligase. Here we report that POSH stimulates the ubiquitination of Kir1.1 (ROMK) and enhances the internalization of this potassium channel. Immunostaining reveals the expression of POSH in the renal cortical collecting duct. Immunoprecipitation of renal tissue lysate with ROMK antibody and glutathione S-transferase pulldown experiments demonstrated the association between ROMK and POSH. Moreover, immunoprecipitation of lysates of HEK293T cells transfected with ROMK1 or with constructs encoding the ROMK-N terminus or ROMK1-C-Terminus demonstrated that POSH binds to ROMK1 on its N terminus. To study the effect of POSH on ROMK1 channels, we measured potassium currents with electrophysiological methods in HEK293T cells and in oocytes transfected or injected with ROMK1 and POSH. POSH decreased potassium currents, and the inhibitory effect of POSH on ROMK channels was dose-dependent. Biotinylation assay further showed that POSH decreased surface expression of ROMK channels in HEK293T cells transfected with ROMK1 and POSH. The effect of POSH on ROMK1 channels was specific because POSH did not inhibit sodium current in oocytes injected with ENaC-alpha, beta, and gamma subunits. Moreover, POSH still decreased the potassium current in oocytes injected with a ROMK1 mutant (R1Delta373-378), in which a clathrin-dependent tyrosine-based internalization signal residing between amino acid residues 373 and 378 is deleted. However, the inhibitory effect of POSH on ROMK channels was absent in cells expressing with dominant negative dynamin and POSHDeltaRING, in which the RING domain was deleted. Expression of POSH also increased the ubiquitination of ROMK1, whereas expression of POSHDeltaRING diminished its ubiquitination in HEK293T cells. The notion that POSH may serve as an E3 ubiquitin ligase is also supported by in vitro ubiquitination assays in which adding POSH increased the ROMK ubiquitination. We conclude that POSH inhibits ROMK channels by enhancing dynamin-dependent and clathrin-independent endocytosis and by stimulating ubiquitination of ROMK channels.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Regulação da Expressão Gênica/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitinação/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Clatrina/genética , Clatrina/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Canais Epiteliais de Sódio/biossíntese , Canais Epiteliais de Sódio/genética , Humanos , Túbulos Renais Coletores , Oócitos/citologia , Oócitos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Sinais Direcionadores de Proteínas/fisiologia , Estrutura Terciária de Proteína/fisiologia , Ratos , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases/genética , Xenopus laevis
12.
J Nephrol ; 23 Suppl 16: S97-104, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21170894

RESUMO

Potassium homeostasis depends on the coordinated interaction between tightly regulated potassium transfer in and out of the extracellular fluid compartment, and renal excretion or retention of potassium. Potassium transport along the nephron involves extensive proximal tubule reabsorption of potassium. Potassium is also reabsorbed along the thick ascending limb of Henle's loop. Regulated potassium secretion, or potassium reabsorption in exchange for hydrogen ions along the connecting tubule and collecting tubule, is responsible for potassium excretion. Renal potassium transport is modulated by potassium intake, several hormones, acid-base factors and distal nephron sodium delivery. WNK family kinases have also emerged as factors regulating sodium and potassium transport in the distal nephron.


Assuntos
Potássio/metabolismo , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Transporte de Íons , Antígenos de Histocompatibilidade Menor , Canais de Potássio/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteína Quinase 1 Deficiente de Lisina WNK
13.
Pflugers Arch ; 458(1): 157-68, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18839206

RESUMO

This review provides an overview of the molecular mechanisms of K transport in the mammalian connecting tubule (CNT) and cortical collecting duct (CCD), both nephron segments responsible for the regulation of renal K secretion. Aldosterone and dietary K intake are two of the most important factors regulating K secretion in the CNT and CCD. Recently, angiotensin II (AngII) has also been shown to play a role in the regulation of K secretion. In addition, genetic and molecular biological approaches have further identified new mechanisms by which aldosterone and dietary K intake regulate K transport. Thus, the interaction between serum-glucocorticoid-induced kinase 1 (SGK1) and with-no-lysine kinase 4 (WNK4) plays a significant role in mediating the effect of aldosterone on ROMK (Kir1.1), an important apical K channel modulating K secretion. Recent evidence suggests that WNK1, mitogen-activated protein kinases such as P38, ERK, and Src family protein tyrosine kinase are involved in mediating the effect of low K intake on apical K secretory channels.


Assuntos
Túbulos Renais Coletores/metabolismo , Potássio na Dieta/farmacologia , Potássio/metabolismo , Aldosterona/fisiologia , Angiotensina II/fisiologia , Animais , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Hormônios Gastrointestinais/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Peptídeos Natriuréticos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Quinases da Família src/fisiologia
14.
Kidney Int ; 75(1): 25-30, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18769367

RESUMO

Stimulation of the basolateral Na(+)/K(+)-ATPase in the isolated perfused rabbit cortical collecting duct by raising either bath potassium or lumen sodium increases potassium secretion, sodium absorption and their apical conductances. Here we determined the effect of stimulating Na(+)/K(+)-ATPase on potassium secretion without luminal sodium transport. Acutely raising bath potassium concentrations from 2.5 to 8.5 mM, without luminal sodium, depolarized the basolateral membrane and transepithelial voltages while increasing the transepithelial, basolateral and apical membrane conductances of principal cells. Fractional apical membrane resistance and cell pH were elevated. Net potassium secretion was maintained albeit diminished and was still enhanced by raising bath potassium, but was reduced by basolateral ethylisopropylamiloride, an inhibitor of Na(+)/H(+) exchange. Luminal iberitoxin, a specific inhibitor of the calcium-activated big-conductance potassium (BK) channel, impaired potassium secretion both in the presence and absence of luminal sodium. In contrast, iberitoxin did not affect luminal sodium transport. We conclude that basolateral Na(+)/H(+) exchange in the cortical collecting duct plays an important role in maintaining potassium secretion during compromised sodium supplies and that BK channels contribute to potassium secretion.


Assuntos
Túbulos Renais Coletores/metabolismo , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Animais , Transporte Biológico , Potenciais da Membrana , Coelhos
15.
J Clin Invest ; 116(3): 797-807, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16470247

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel plays vital roles in fluid transport in many epithelia. While CFTR is expressed along the entire nephron, its function in renal tubule epithelial cells remains unclear, as no specific renal phenotype has been identified in cystic fibrosis. CFTR has been proposed as a regulator of the 30 pS, ATP-sensitive renal K channel (Kir1.1, also known as renal outer medullar K [ROMK]) that is critical for K secretion by cells of the thick ascending limb (TAL) and distal nephron segments responsive to aldosterone. We report here that both ATP and glibenclamide sensitivities of the 30 pS K channel in TAL cells were absent in mice lacking CFTR and in mice homozygous for the deltaF508 mutation. Curcumin treatment in deltaF508-CFTR mice partially reversed the defect in ATP sensitivity. We demonstrate that the effect of CFTR on ATP sensitivity was abrogated by increasing PKA activity. We propose that CFTR regulates the renal K secretory channel by providing a PKA-regulated functional switch that determines the distribution of open and ATP-inhibited K channels in apical membranes. We discuss the potential physiological role of this functional switch in renal K handling during water diuresis and the relevance to renal K homeostasis in cystic fibrosis.


Assuntos
Trifosfato de Adenosina/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Rim/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Curcumina/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Camundongos Transgênicos , Mutação , Oócitos/metabolismo , Técnicas de Patch-Clamp , Xenopus laevis
16.
Trends Endocrinol Metab ; 19(3): 91-5, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18280177

RESUMO

The discovery that mutations in WNK4 [encoding a member of the WNK family - so named because of the unique substitution of cysteine for lysine at a nearly invariant residue within subdomain II of its catalytic core: with no K (lysine)] cause pseudohypoaldosteronism type II, an autosomal dominant form of human hypertension, provided the initial clue that this serine/threonine kinase is a crucial part of a complex renal salt regulatory system. Recent findings from physiological studies of WNK4 in Xenopus laevis oocytes, mammalian cell systems and in vivo in mouse models have provided novel insights into the mechanisms by which the kidney regulates salt homeostasis, and therefore blood pressure, downstream of aldosterone signaling in mammals. The current evidence supports a model in which WNK4 coordinates the activities of diverse aldosterone-sensitive mediators of ion transport in the distal nephron to promote normal homeostasis in response to physiological perturbation.


Assuntos
Pressão Sanguínea/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Hipertensão/fisiopatologia , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas de Xenopus/fisiologia , Xenopus laevis
17.
Gut Liver ; 10(6): 881-889, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27784845

RESUMO

Potassium channels and transporters maintain potassium homeostasis and play significant roles in several different biological actions via potassium ion regulation. In previous decades, the key revelations that potassium channels and transporters are involved in the production of gastric acid and the regulation of secretion in the stomach have been recognized. Drugs used to treat peptic ulceration are often potassium transporter inhibitors. It has also been reported that potassium channels are involved in ulcerative colitis. Direct toxicity to the intestines from nonsteroidal anti-inflammatory drugs has been associated with altered potassium channel activities. Several reports have indicated that the long-term use of the antianginal drug Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, increases the chances of ulceration and perforation from the oral to anal regions throughout the gastrointestinal (GI) tract. Several of these drug features provide further insights into the role of potassium channels in the occurrence of ulceration in the GI tract. The purpose of this review is to investigate whether potassium channelopathies are involved in the mechanisms responsible for ulceration that occurs throughout the GI tract.


Assuntos
Canalopatias , Gastroenteropatias/patologia , Úlcera Péptica/patologia , Canais de Potássio/fisiologia , Úlcera/patologia , Animais , Antiarrítmicos/efeitos adversos , Colo/metabolismo , Gastroenteropatias/metabolismo , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Humanos , Camundongos , Nicorandil/efeitos adversos , Úlcera Péptica/metabolismo , Úlcera/metabolismo
18.
J Gen Physiol ; 120(5): 603-15, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12407074

RESUMO

The small-conductance K+ channel (SK) in the apical membrane of the cortical-collecting duct (CCD) is regulated by adenosine triphosphate (ATP) and phosphorylation-dephosphorylation processes. When expressed in Xenopus oocytes, ROMK, a cloned K+ channel similar to the native SK channel, can be stimulated by phosphatidylinositol bisphosphate (PIP2), which is produced by phosphoinositide kinases from phosphatidylinositol. However, the effects of PIP2 on SK channel activity are not known. In the present study, we investigated the mechanism by which hydrolyzable ATP prevented run-down of SK channel activity in excised apical patches of principal cells from rat CCD. Channel run-down was significantly delayed by pretreatment with hydrolyzable Mg-ATP, but ATP gamma S and AMP-PNP had no effect. Addition of alkaline phosphatase also resulted in loss of channel activity. After run-down, SK channel activity rapidly increased upon addition of PIP2. Exposure of inside-out patches to phosphoinositide kinase inhibitors (LY294002, quercetin or wortmannin) decreased channel activity by 74% in the presence of Mg-ATP. PIP2 added to excised patches reactivated SK channels in the presence of these phosphoinositide kinase inhibitors. The protein kinase A inhibitor, PKI, reduced channel activity by 36% in the presence of Mg-ATP. PIP2 was also shown to modulate the inhibitory effects of extracellular and cytosolic ATP. We conclude that both ATP-dependent formation of PIP2 through membrane-bound phosphoinositide kinases and phosphorylation of SK by PKA play important roles in modulating SK channel activity.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Túbulos Renais Coletores/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio/fisiologia , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Membrana Celular/metabolismo , Eletrofisiologia , Hidrólise , Córtex Renal/metabolismo , Cinética , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Fosforilação , Mapeamento de Interação de Proteínas , Ratos , Ratos Sprague-Dawley
19.
J Nephrol ; 17(1): 159-65, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15151273

RESUMO

Homer Smith was, for three decades, from the 1930s until his death in 1962, one of the leaders in the field of renal physiology. His contributions were many: he played a major role in introducing and popularizing renal clearance methods, introduced non-invasive methods for the measurement of glomerular filtration rate, of renal blood flow and tubular transport capacity, and provided novel insights into the mechanisms of excretion of water and electrolytes. Homer Smith's contributions went far beyond his personal investigations. He was a superb writer of several inspiring textbooks of renal physiology that exerted great and lasting influence on the development of renal physiology. Smith's intellectual insights and ability for critical analysis of data allowed him to create broad concepts that defined the functional properties of glomeruli, tubules and the renal circulation. A distinguishing feature of Homer Smith's career was his close contact and collaboration, over many years, with several clinicians of his alma mater, New York University. For initiating these pathophysiological investigations, he is justly credited to have advanced, in a major way, our understanding of altered renal function in disease. Smith's lasting scientific impact is also reflected by a whole school of investigators that trained with him and who applied his methods, analyses and concepts to the study of renal function all over the world. So great was his influence and preeminence that Robert Pitts, in his excellent tribute to Homer Smith in the Memoirs of the National Academy of Science states that his death brought an end to what might be aptly called the Smithian Era of renal physiology.


Assuntos
Rim/fisiologia , Nefrologia/história , História do Século XX , Humanos , Estados Unidos
20.
J Nephrol ; 15 Suppl 5: S151-60, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12027214

RESUMO

Many of the transporters mediating renal acid-base homeostasis have recently been identified at the molecular level. These advances have made it possible to generate transgenic mice with deficiency or overexpression of specific transporter isoforms. Such knockout mice have served as useful experimental models to quantitate the contribution of a given transporter isoform to transtubular acid-base transport along the nephron. Studies with transgenic and knockout mice have also been used to elucidate the compensatory adaptive mechanisms in response to specific transport deficiencies. We review experiments using transgenic mice to evaluate the physiological roles in acid-base transport of NHE isoforms, vacuolar H+ pump subunits, H+, K(+)-ATPase isoforms, carbonic anhydrase, Cl(-)-base exchangers and such regulatory mediators as nitric oxide and endothelin.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Animais Geneticamente Modificados , Rim/metabolismo , Animais , Transporte Biológico , Anidrases Carbônicas/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Isoformas de Proteínas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA