Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 4(8): 1060-1068, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32541802

RESUMO

Climate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses (that is, additive, antagonistic and synergistic effects). We know little about the spatial scales relevant for the outcomes of such interactions and little about effect sizes. These knowledge gaps need to be filled to underpin future land management decisions or climate mitigation interventions for protecting and restoring freshwater ecosystems. This study combines data across scales from 33 mesocosm experiments with those from 14 river basins and 22 cross-basin studies in Europe, producing 174 combinations of paired-stressor effects on a biological response variable. Generalized linear models showed that only one of the two stressors had a significant effect in 39% of the analysed cases, 28% of the paired-stressor combinations resulted in additive effects and 33% resulted in interactive (antagonistic, synergistic, opposing or reversal) effects. For lakes, the frequencies of additive and interactive effects were similar for all spatial scales addressed, while for rivers these frequencies increased with scale. Nutrient enrichment was the overriding stressor for lakes, with effects generally exceeding those of secondary stressors. For rivers, the effects of nutrient enrichment were dependent on the specific stressor combination and biological response variable. These results vindicate the traditional focus of lake restoration and management on nutrient stress, while highlighting that river management requires more bespoke management solutions.


Assuntos
Ecossistema , Água Doce , Biota , Europa (Continente) , Rios
2.
Sci Total Environ ; 652: 1290-1301, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30586815

RESUMO

Increased fine sediment deposition is recognised as one of the major causes of biological impairment of rivers and streams influencing all components of aquatic communities. Notably, stream macroinvertebrates are affected showing changes in abundance and community composition. This makes macroinvertebrates an attractive choice for biomonitoring fine sediment stress. However, there are substantial knowledge gaps regarding the quantification of deposited fine sediment and the identification of taxa sensitive to fine sediment deposition, which could serve as indicators. In this study, we developed a stream type-specific index based on the taxon-specific response of macroinvertebrates to deposited fine sediment in small, coarse substrate-dominated mountain streams. We sampled fine sediment at 73 sampling sites in Western Germany (Europe) in spring 2014 and 2015 using a sediment remobilization technique. Macroinvertebrate taxalists originating from WFD monitoring surveys were available for all sites. We applied Threshold Indicator Taxa ANalysis (TITAN) on the fine sediment mass of the sampling sites and the corresponding macroinvertebrate taxalists to identify indicator taxa, which were then used for index development. In total, TITAN identified 95 reliable indicator taxa, of which some taxa tolerated large amounts of fine sediment (e.g., Gammarus roeselii and Tubificidae Gen. sp.), while others were found to be highly sensitive to increased fine sediment mass (e.g., Elodes sp. and Limnius perrisi). The newly developed index was tested on an independent data set and performed well in detecting fine sediment stress (Spearman's r = 0.63). Furthermore, the index was better related to the deposited fine sediment mass as compared to other fine sediment indices and standard metrics used for monitoring purposes under the Water Framework Directive (WFD). The diagnostic index can be a cost-effective biomonitoring tool for stream managers and can be used as a proxy for the impact of deposited fine sediment on the reach scale.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Invertebrados/crescimento & desenvolvimento , Animais , Organismos Aquáticos/classificação , Classificação , Alemanha , Invertebrados/classificação , Tamanho da Partícula , Rios/química , Propriedades de Superfície
3.
Sci Total Environ ; 593-594: 27-35, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28340479

RESUMO

Freshwater ecosystems are impacted by a range of stressors arising from diverse human-caused land and water uses. Identifying the relative importance of single stressors and understanding how multiple stressors interact and jointly affect biology is crucial for River Basin Management. This study addressed multiple human-induced stressors and their effects on the aquatic flora and fauna based on data from standard WFD monitoring schemes. For altogether 1095 sites within a mountainous catchment, we used 12 stressor variables covering three different stressor groups: riparian land use, physical habitat quality and nutrient enrichment. Twenty-one biological metrics calculated from taxa lists of three organism groups (fish, benthic invertebrates and aquatic macrophytes) served as response variables. Stressor and response variables were subjected to Boosted Regression Tree (BRT) analysis to identify stressor hierarchy and stressor interactions and subsequently to Generalised Linear Regression Modelling (GLM) to quantify the stressors standardised effect size. Our results show that riverine habitat degradation was the dominant stressor group for the river fauna, notably the bed physical habitat structure. Overall, the explained variation in benthic invertebrate metrics was higher than it was in fish and macrophyte metrics. In particular, general integrative (aggregate) metrics such as % Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa performed better than ecological traits (e.g. % feeding types). Overall, additive stressor effects dominated, while significant and meaningful stressor interactions were generally rare and weak. We concluded that given the type of stressor and ecological response variables addressed in this study, river basin managers do not need to bother much about complex stressor interactions, but can focus on the prevailing stressors according to the hierarchy identified.


Assuntos
Biota , Ecossistema , Monitoramento Ambiental , Animais , Conservação dos Recursos Naturais , Peixes , Alemanha , Invertebrados , Plantas , Rios , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA