Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 56(38): 11409-11414, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28700101

RESUMO

The conformation of the activation loop (T-loop) of protein kinases underlies enzymatic activity and influences the binding of small-molecule inhibitors. By using single-molecule fluorescence spectroscopy, we have determined that phosphorylated Aurora A kinase is in dynamic equilibrium between a DFG-in-like active T-loop conformation and a DFG-out-like inactive conformation, and have measured the rate constants of interconversion. Addition of the Aurora A activating protein TPX2 shifts the equilibrium towards an active T-loop conformation whereas addition of the inhibitors MLN8054 and CD532 favors an inactive T-loop. We show that Aurora A binds TPX2 and MLN8054 simultaneously and provide a new model for kinase conformational behavior. Our approach will enable conformation-specific effects to be integrated into inhibitor discovery across the kinome, and we outline some immediate consequences for structure-based drug discovery.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Aurora Quinase A/metabolismo , Fluorescência , Humanos , Ligantes , Modelos Moleculares , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química
2.
Chem Sci ; 10(14): 4069-4076, 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-31015948

RESUMO

Structure-based drug design is commonly used to guide the development of potent and specific enzyme inhibitors. Many enzymes - such as protein kinases - adopt multiple conformations, and conformational interconversion is expected to impact on the design of small molecule inhibitors. We measured the dynamic equilibrium between DFG-in-like active and DFG-out-like inactive conformations of the activation loop of unphosphorylated Aurora-A alone, in the presence of the activator TPX2, and in the presence of kinase inhibitors. The unphosphorylated kinase had a shorter residence time of the activation loop in the active conformation and a shift in the position of equilibrium towards the inactive conformation compared with phosphorylated kinase for all conditions measured. Ligand binding was associated with a change in the position of conformational equilibrium which was specific to each ligand and independent of the kinase phosphorylation state. As a consequence of this, the ability of a ligand to discriminate between active and inactive activation loop conformations was also independent of phosphorylation. Importantly, we discovered that the presence of multiple enzyme conformations can lead to a plateau in the overall ligand K d, despite increasing affinity for the chosen target conformation, and modelled the conformational discrimination necessary for a conformation-promoting ligand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA