Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 82(16): 2967-2981.e6, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35830855

RESUMO

We generate high-precision measurements of the in vivo rates of both chemical steps of pre-mRNA splicing across the genome-wide complement of substrates in yeast by coupling metabolic labeling, multiplexed primer-extension sequencing, and kinetic modeling. We demonstrate that the rates of intron removal vary widely, splice-site sequences are primary determinants of 1st step but have little apparent impact on 2nd step rates, and the 2nd step is generally faster than the 1st step. Ribosomal protein genes (RPGs) are spliced faster than non-RPGs at each step, and RPGs share evolutionarily conserved properties that may contribute to their faster splicing. A genetic variant defective in the 1st step of the pathway reveals a genome-wide defect in the 1st step but an unexpected, transcript-specific change in the 2nd step. Our work demonstrates that extended co-transcriptional association is an important determinant of splicing rate, a conclusion at odds with recent claims of ultra-fast splicing.


Assuntos
Precursores de RNA , Splicing de RNA , Íntrons/genética , Cinética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(37): e2210321119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36001732

RESUMO

Long noncoding RNAs (lncRNAs) have emerged as critical regulators of gene expression, yet their contribution to immune regulation in humans remains poorly understood. Here, we report that the primate-specific lncRNA CHROMR is induced by influenza A virus and SARS-CoV-2 infection and coordinates the expression of interferon-stimulated genes (ISGs) that execute antiviral responses. CHROMR depletion in human macrophages reduces histone acetylation at regulatory regions of ISG loci and attenuates ISG expression in response to microbial stimuli. Mechanistically, we show that CHROMR sequesters the interferon regulatory factor (IRF)-2-dependent transcriptional corepressor IRF2BP2, thereby licensing IRF-dependent signaling and transcription of the ISG network. Consequently, CHROMR expression is essential to restrict viral infection of macrophages. Our findings identify CHROMR as a key arbitrator of antiviral innate immune signaling in humans.


Assuntos
COVID-19 , Proteínas de Ligação a DNA , Imunidade Inata , Vírus da Influenza A , Influenza Humana , RNA Longo não Codificante , SARS-CoV-2 , Fatores de Transcrição , COVID-19/genética , COVID-19/imunologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Imunidade Inata/genética , Vírus da Influenza A/imunologia , Influenza Humana/genética , Influenza Humana/imunologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/fisiologia , SARS-CoV-2/imunologia , Fatores de Transcrição/metabolismo
3.
Methods ; 176: 34-45, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31121301

RESUMO

The study of pre-mRNA splicing has been greatly aided by the advent of RNA sequencing (RNA-seq), which enables the genome-wide detection of discrete splice isoforms. Quantification of these splice isoforms requires analysis of splicing informative sequencing reads, those that unambiguously map to a single splice isoform, including exon-intron spanning alignments corresponding to retained introns, as well as exon-exon junction spanning alignments corresponding to either canonically- or alternatively-spliced isoforms. Because most RNA-seq experiments are designed to produce sequencing alignments that uniformly cover the entirety of transcripts, only a comparatively small number of splicing informative alignments are generated for any given splice site, leading to a decreased ability to detect and/or robustly quantify many splice isoforms. To address this problem, we have recently described a method termed Multiplexed Primer Extension sequencing, or MPE-seq, which uses pools of reverse transcription primers to target sequencing to user selected loci. By targeting reverse transcription to pre-mRNA splice junctions, this approach enables a dramatic enrichment in the fraction of splicing informative alignments generated per splicing event, yielding an increase in both the precision with which splicing efficiency can be measured, and in the detection of splice isoforms including rare splicing intermediates. Here we provide a brief review of the shortcomings associated with RNA-seq that drove our development of MPE-seq, as well as a detailed protocol for implementation of MPE-seq.


Assuntos
Isoformas de RNA/genética , RNA Mensageiro/genética , RNA-Seq/métodos , Processamento Alternativo , Biologia Computacional/métodos , Loci Gênicos , Precursores de RNA/genética , Sítios de Splice de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA