Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Bot ; 110(9): e16214, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37475703

RESUMO

PREMISE: Plants survive in habitats with limited resource availability and contrasting environments by responding to variation in environmental factors through morphophysiological traits related to species performance in different ecosystems. However, how different plant strategies influence the megadiversity of tropical species has remained a knowledge gap. METHODS: We analyzed variations in 27 morphophysiological traits of leaves and secondary xylem in Erythroxylum pulchrum and Tapirira guianensis, which have the highest absolute dominance in these physiognomies and occur together in areas of restinga and dense ombrophilous forest to infer water-transport strategies of Atlantic Forest woody plants. RESULTS: The two species presented different sets of morphophysiological traits, strategies to avoid embolism and ensure water transport, in different phytophysiognomies. Tapirira guianensis showed possible adaptations influenced by phytophysiognomy, while E. pulchrum showed less variation in the set of characteristics between different phytophysiognomies. CONCLUSIONS: Our results provide essential tools to understand how the environment can modulate morphofunctional traits and how each species adjusts differently to adapt to different phytophysiognomies. In this sense, the results for these species reveal new species-specific responses in the tropical forest. Such knowledge is a prerequisite to predict future development of the most vulnerable forests as climate changes.


Assuntos
Ecossistema , Árvores , Árvores/fisiologia , Clima Tropical , Água/fisiologia , Florestas , Folhas de Planta/fisiologia
2.
New Phytol ; 229(3): 1363-1374, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32981040

RESUMO

Plant traits are increasingly being used to improve prediction of plant function, including plant demography. However, the capability of plant traits to predict demographic rates remains uncertain, particularly in the context of trees experiencing a changing climate. Here we present data combining 17 plant traits associated with plant structure, metabolism and hydraulic status, with measurements of long-term mean, maximum and relative growth rates for 176 trees from the world's longest running tropical forest drought experiment. We demonstrate that plant traits can predict mean annual tree growth rates with moderate explanatory power. However, only combinations of traits associated more directly with plant functional processes, rather than more commonly employed traits like wood density or leaf mass per area, yield the power to predict growth. Critically, we observe a shift from growth being controlled by traits related to carbon cycling (assimilation and respiration) in well-watered trees, to traits relating to plant hydraulic stress in drought-stressed trees. We also demonstrate that even with a very comprehensive set of plant traits and growth data on large numbers of tropical trees, considerable uncertainty remains in directly interpreting the mechanisms through which traits influence performance in tropical forests.


Assuntos
Árvores , Clima Tropical , Mudança Climática , Secas , Florestas , Folhas de Planta
3.
Glob Chang Biol ; 26(6): 3569-3584, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32061003

RESUMO

The fate of tropical forests under future climate change is dependent on the capacity of their trees to adjust to drier conditions. The capacity of trees to withstand drought is likely to be determined by traits associated with their hydraulic systems. However, data on whether tropical trees can adjust hydraulic traits when experiencing drought remain rare. We measured plant hydraulic traits (e.g. hydraulic conductivity and embolism resistance) and plant hydraulic system status (e.g. leaf water potential, native embolism and safety margin) on >150 trees from 12 genera (36 species) and spanning a stem size range from 14 to 68 cm diameter at breast height at the world's only long-running tropical forest drought experiment. Hydraulic traits showed no adjustment following 15 years of experimentally imposed moisture deficit. This failure to adjust resulted in these drought-stressed trees experiencing significantly lower leaf water potentials, and higher, but variable, levels of native embolism in the branches. This result suggests that hydraulic damage caused by elevated levels of embolism is likely to be one of the key drivers of drought-induced mortality following long-term soil moisture deficit. We demonstrate that some hydraulic traits changed with tree size, however, the direction and magnitude of the change was controlled by taxonomic identity. Our results suggest that Amazonian trees, both small and large, have limited capacity to acclimate their hydraulic systems to future droughts, potentially making them more at risk of drought-induced mortality.


Assuntos
Secas , Árvores , Brasil , Folhas de Planta , Floresta Úmida , Água
4.
New Phytol ; 218(4): 1393-1405, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29397028

RESUMO

CO2 efflux from stems (CO2_stem ) accounts for a substantial fraction of tropical forest gross primary productivity, but the climate sensitivity of this flux remains poorly understood. We present a study of tropical forest CO2_stem from 215 trees across wet and dry seasons, at the world's longest running tropical forest drought experiment site. We show a 27% increase in wet season CO2_stem in the droughted forest relative to a control forest. This was driven by increasing CO2_stem in trees 10-40 cm diameter. Furthermore, we show that drought increases the proportion of maintenance to growth respiration in trees > 20 cm diameter, including large increases in maintenance respiration in the largest droughted trees, > 40 cm diameter. However, we found no clear taxonomic influence on CO2_stem and were unable to accurately predict how drought sensitivity altered ecosystem scale CO2_stem , due to substantial uncertainty introduced by contrasting methods previously employed to scale CO2_stem fluxes. Our findings indicate that under future scenarios of elevated drought, increases in CO2_stem may augment carbon losses, weakening or potentially reversing the tropical forest carbon sink. However, due to substantial uncertainties in scaling CO2_stem fluxes, stand-scale future estimates of changes in stem CO2 emissions remain highly uncertain.


Assuntos
Dióxido de Carbono/metabolismo , Secas , Florestas , Caules de Planta/metabolismo , Estresse Fisiológico , Árvores/anatomia & histologia , Clima Tropical , Respiração Celular , Estações do Ano
5.
AoB Plants ; 15(3): plad018, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37214224

RESUMO

Amazonian savannas are isolated patches of open habitats found within the extensive matrix of Amazonian tropical forests. There remains limited evidence on how Amazonian plants from savannas differ in the traits related to drought resistance and water loss control. Previous studies have reported several xeromorphic characteristics of Amazonian savanna plants at the leaf and branch levels that are linked to soil, solar radiation, rainfall and seasonality. How anatomical features relate to plant hydraulic functioning in this ecosystem is less known and instrumental if we want to accurately model transitions in trait states between alternative vegetation in Amazonia. In this context, we combined studies of anatomical and hydraulic traits to understand the structure-function relationships of leaf and wood xylem in plants of Amazonian savannas. We measured 22 leaf, wood and hydraulic traits, including embolism resistance (as P50), Hydraulic Safety Margin (HSM) and isotope-based water use efficiency (WUE), for the seven woody species that account for 75% of the biomass of a typical Amazonian savanna on rocky outcrops in the state of Mato Grosso, Brazil. Few anatomical traits are related to hydraulic traits. Our findings showed wide variation exists among the seven species studied here in resistance to embolism, water use efficiency and structural anatomy, suggesting no unique dominant functional plant strategy to occupy an Amazonian savanna. We found wide variation in resistance to embolism (-1.6 ± 0.1 MPa and -5.0 ± 0.5 MPa) with species that are less efficient in water use (e.g. Kielmeyera rubriflora, Macairea radula, Simarouba versicolor, Parkia cachimboensis and Maprounea guianensis) showing higher stomatal conductance potential, supporting xylem functioning with leaf succulence and/or safer wood anatomical structures and that species that are more efficient in water use (e.g. Norantea guianensis and Alchornea discolor) can exhibit riskier hydraulic strategies. Our results provide a deeper understanding of how branch and leaf structural traits combine to allow for different hydraulic strategies among coexisting plants. In Amazonian savannas, this may mean investing in buffering water loss (e.g. succulence) at leaf level or safer structures (e.g. thicker pit membranes) and architectures (e.g. vessel grouping) in their branch xylem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA