Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(13): 6130-6139, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30867287

RESUMO

We have identified regulatory mechanisms in which an RNA transcript forms a DNA duplex·RNA triple helix with a gene or one of its regulatory elements, suggesting potential auto-regulatory mechanisms in vivo. We describe an interaction at the human ß-globin locus, in which an RNA segment embedded in the second intron of the ß-globin gene forms a DNA·RNA triplex with the HS2 sequence within the ß-globin locus control region, a major regulator of globin expression. We show in human K562 cells that the triplex is stable in vivo. Its formation causes displacement from HS2 of major transcription factors and RNA Polymerase II, and consequently in loss of factors and polymerase that bind to the human ε- and γ-globin promoters, which are activated by HS2 in K562 cells. This results in reduced expression of these genes. These effects are observed when a small length of triplex-forming RNA is introduced into cells, or when a full-length intron-containing human ß-globin transcript is expressed. Related results are obtained in human umbilical cord blood-derived erythroid progenitor-2 cells, in which ß-globin expression is similarly affected by triplex formation. These results suggest a model in which RNAs conforming to the strict sequence rules for DNA·RNA triplex formation may participate in feedback regulation of genes in cis.


Assuntos
DNA/metabolismo , RNA/metabolismo , Globinas beta/metabolismo , DNA/química , DNA/genética , Loci Gênicos/genética , Humanos , Células K562 , Conformação de Ácido Nucleico , RNA/química , RNA/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Globinas beta/genética
2.
Proc Natl Acad Sci U S A ; 115(50): E11633-E11641, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30482860

RESUMO

DNA sequence motifs that affect RNA polymerase transcription elongation are well studied in prokaryotic organisms and contribute directly to regulation of gene expression. Despite significant work on the regulation of eukaryotic transcription, the effect of DNA template sequence on RNA polymerase I (Pol I) transcription elongation remains unknown. In this study, we examined the effects of DNA sequence motifs on Pol I transcription elongation kinetics in vitro and in vivo. Specifically, we characterized how the spy rho-independent terminator motif from Escherichia coli directly affects Saccharomyces cerevisiae Pol I activity, demonstrating evolutionary conservation of sequence-specific effects on transcription. The insight gained from this analysis led to the identification of a homologous sequence in the ribosomal DNA of S. cerevisiae We then used native elongating transcript sequencing (NETSeq) to determine whether Pol I encounters pause-inducing sequences in vivo. We found hundreds of positions within the ribosomal DNA (rDNA) that reproducibly induce pausing in vivo. We also observed significantly lower Pol I occupancy at G residues in the rDNA, independent of other sequence context, indicating differential nucleotide incorporation rates for Pol I in vivo. These data demonstrate that DNA template sequence elements directly influence Pol I transcription elongation. Furthermore, we have developed the necessary experimental and analytical methods to investigate these perturbations in living cells going forward.


Assuntos
DNA Ribossômico/genética , DNA Ribossômico/metabolismo , RNA Polimerase I/metabolismo , Elongação da Transcrição Genética , Sequência de Bases , Sequência Conservada , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Regiões Terminadoras Genéticas , Uridina Trifosfato/metabolismo
3.
Genes Dev ; 27(14): 1581-95, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23824326

RESUMO

Post-translational histone modifications play important roles in regulating chromatin structure and function. Histone H2B ubiquitination and deubiquitination have been implicated in transcriptional regulation, but the function of H2B deubiquitination is not well defined, particularly in higher eukaryotes. Here we report the purification of ubiquitin-specific peptidase 49 (USP49) as a histone H2B-specific deubiquitinase and demonstrate that H2B deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons. USP49 forms a complex with RuvB-like1 (RVB1) and SUG1 and specifically deubiquitinates histone H2B in vitro and in vivo. USP49 knockdown results in small changes in gene expression but affects the abundance of >9000 isoforms. Exons down-regulated in USP49 knockdown cells show both elevated levels of alternative splicing and a general decrease in splicing efficiency. Importantly, USP49 is relatively enriched at this set of exons. USP49 knockdown increased H2B ubiquitination (uH2B) levels at these exons as well as upstream 3' and downstream 5' intronic splicing elements. Change in H2B ubiquitination level, as modulated by USP49, regulates U1A and U2B association with chromatin and binding to nascent pre-mRNA. Although H3 levels are relatively stable after USP49 depletion, H2B levels at these exons are dramatically increased, suggesting that uH2B may enhance nucleosome stability. Therefore, this study identifies USP49 as a histone H2B-specific deubiquitinase and uncovers a critical role for H2B deubiquitination in cotranscriptional pre-mRNA processing events.


Assuntos
Histonas/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , DNA Helicases/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas com Domínio LIM/metabolismo , Complexo de Endopeptidases do Proteassoma , Fatores de Transcrição/metabolismo , Ubiquitina Tiolesterase/isolamento & purificação , Ubiquitinação
4.
Proc Natl Acad Sci U S A ; 114(38): E7949-E7958, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28855339

RESUMO

Posttranslational histone modifications play important roles in regulating chromatin-based nuclear processes. Histone H2AK119 ubiquitination (H2Aub) is a prevalent modification and has been primarily linked to gene silencing. However, the underlying mechanism remains largely obscure. Here we report the identification of RSF1 (remodeling and spacing factor 1), a subunit of the RSF complex, as a H2Aub binding protein, which mediates the gene-silencing function of this histone modification. RSF1 associates specifically with H2Aub, but not H2Bub nucleosomes, through a previously uncharacterized and obligatory region designated as ubiquitinated H2A binding domain. In human and mouse cells, genes regulated by RSF1 overlap significantly with those controlled by RNF2/Ring1B, the subunit of Polycomb repressive complex 1 (PRC1) which catalyzes the ubiquitination of H2AK119. About 82% of H2Aub-enriched genes, including the classic PRC1 target Hox genes, are bound by RSF1 around their transcription start sites. Depletion of H2Aub levels by Ring1B knockout results in a significant reduction of RSF1 binding. In contrast, RSF1 knockout does not affect RNF2/Ring1B or H2Aub levels but leads to derepression of H2Aub target genes, accompanied by changes in H2Aub chromatin organization and release of linker histone H1. The action of RSF1 in H2Aub-mediated gene silencing is further demonstrated by chromatin-based in vitro transcription. Finally, RSF1 and Ring1 act cooperatively to regulate mesodermal cell specification and gastrulation during Xenopus early embryonic development. Taken together, these data identify RSF1 as a H2Aub reader that contributes to H2Aub-mediated gene silencing by maintaining a stable nucleosome pattern at promoter regions.


Assuntos
Inativação Gênica/fisiologia , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Transativadores/metabolismo , Ubiquitinação/fisiologia , Animais , Células HeLa , Histonas/genética , Humanos , Camundongos , Proteínas Nucleares/genética , Nucleossomos/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Regiões Promotoras Genéticas/fisiologia , Transativadores/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
J Biol Chem ; 291(34): 17919-28, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27288410

RESUMO

The primary role of the RNAi machinery is to promote mRNA degradation within the cytoplasm in a microRNA-dependent manner. However, both Dicer and the Argonaute protein family have expanded roles in gene regulation within the nucleus. To further our understanding of this role, we have identified chromatin binding sites for AGO2 throughout the 45S region of the human rRNA gene. The location of these sites was mirrored by the positions of AGO2 cross-linking sites identified via PAR-CLIP-seq. AGO2 binding to the rRNA within the nucleus was confirmed by RNA immunoprecipitation and quantitative-PCR. To explore a possible mechanism by which AGO2 could be recruited to the rRNA, we identified 1174 regions within the 45S rRNA transcript that have the ability to form a perfect duplex with position 2-6 (seed sequence) of each microRNA expressed in HEK293T cells. Of these potential AGO2 binding sites, 479 occurred within experimentally verified AGO2-rRNA cross-linking sites. The ability of AGO2 to cross-link to rRNA was almost completely lost in a DICER knock-out cell line. The transfection of miR-92a-2-3p into the noDICE cell line facilitated AGO2 cross-linking at a region of the rRNA that has a perfect seed match at positions 3-8, including a single G-U base pair. Knockdown of AGO2 within HEK293T cells causes a slight, but statistically significant increase in the overall rRNA synthesis rate but did not impact the ratio of processing intermediates or the recruitment of the Pol I transcription factor UBTF.


Assuntos
Proteínas Argonautas/metabolismo , MicroRNAs/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/metabolismo , RNA Ribossômico/biossíntese , Proteínas Argonautas/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Células K562 , MicroRNAs/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , RNA Polimerase I/genética , RNA Ribossômico/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
6.
Mol Cell Biol ; 25(11): 4397-405, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15899846

RESUMO

Retroviral replication requires both spliced and unspliced mRNAs. Splicing suppression of avian retroviral RNA depends in part upon a cis-acting element within the gag gene called the negative regulator of splicing (NRS). The NRS, linked to a downstream intron and exon (NRS-Ad3'), was not capable of splicing in vitro. However, a double-point mutation in the NRS pseudo-5' splice site sequence converted it into a functional 5' splice site. The wild-type (WT) NRS-Ad3' transcript assembled an approximately 50S spliceosome-like complex in vitro; its sedimentation rate was similar to that of a functional spliceosome formed on the mutant NRS-Ad3' RNA. The five major spliceosomal snRNPs were observed in both complexes by affinity selection. In addition, U11 snRNP was present only in the WT NRS-Ad3' complex. Addition of heparin to these complexes destabilized the WT NRS-Ad3' complex; it was incapable of forming a B complex on a native gel. Furthermore, the U5 snRNP protein, hPrp8, did not cross-link to the NRS pseudo-5' splice site, suggesting that the tri-snRNP complex was not properly associated with it. We propose that this aberrant, stalled spliceosome, containing U1, U2, and U11 snRNPs and a loosely associated tri-snRNP, sequesters the 3' splice site and prevents its interaction with the authentic 5' splice site upstream of the NRS.


Assuntos
Genes Supressores , Genes gag/genética , Sítios de Splice de RNA/fisiologia , Retroviridae/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Mutação Puntual , Sítios de Splice de RNA/genética , Splicing de RNA/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA , Supressão Genética , Transcrição Gênica , Replicação Viral/genética
7.
PLoS One ; 11(6): e0157276, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27299313

RESUMO

It has become increasingly clear that proper cellular control of pluripotency and differentiation is related to the regulation of rRNA synthesis. To further our understanding of the role that the regulation of rRNA synthesis has in pluripotency we monitored rRNA synthesis during the directed differentiation of human embryonic stem cells (hESCs). We discovered that the rRNA synthesis rate is reduced ~50% within 6 hours of ACTIVIN A treatment. This precedes reductions in expression of specific stem cell markers and increases in expression of specific germ layer markers. The reduction in rRNA synthesis is concomitant with dissociation of the Pol I transcription factor, UBTF, from the rRNA gene promoter and precedes any increase to heterochromatin throughout the rRNA gene. To directly investigate the role of rRNA synthesis in pluripotency, hESCs were treated with the Pol I inhibitor, CX-5461. The direct reduction of rRNA synthesis by CX-5461 induces the expression of markers for all three germ layers, reduces the expression of pluripotency markers, and is overall similar to the ACTIVIN A induced changes. This work indicates that the dissociation of UBTF from the rRNA gene, and corresponding reduction in transcription, represent early regulatory events during the directed differentiation of pluripotent stem cells.


Assuntos
Genes de RNAr , Células-Tronco Embrionárias Humanas/citologia , RNA Ribossômico/genética , Ativação Transcricional , Ativinas/metabolismo , Benzotiazóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Naftiridinas/farmacologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/antagonistas & inibidores , Ativação Transcricional/efeitos dos fármacos
8.
Mol Cell Biol ; 35(13): 2278-94, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25918241

RESUMO

To further our understanding of the RNAi machinery within the human nucleus, we analyzed the chromatin and RNA binding of Argonaute 2 (AGO2) within human cancer cell lines. Our data indicated that AGO2 binds directly to nascent tRNA and 5S rRNA, and to the genomic loci from which these RNAs are transcribed, in a small RNA- and DICER-independent manner. AGO2 chromatin binding was not observed at non-TFIIIC-dependent RNA polymerase III (Pol III) genes or at extra-TFIIIC (ETC) sites, indicating that the interaction is specific for TFIIIC-dependent Pol III genes. A genome-wide analysis indicated that loss of AGO2 caused a global increase in mRNA expression level among genes that flank AGO2-bound tRNA genes. This effect was shown to be distinct from that of the disruption of DICER, DROSHA, or CTCF. We propose that AGO2 binding to tRNA genes has a novel and important regulatory role in human cells.


Assuntos
Proteínas Argonautas/metabolismo , Regulação da Expressão Gênica , RNA de Transferência/genética , Transcrição Gênica , Proteínas Argonautas/genética , Sítios de Ligação , Linhagem Celular , Cromossomos Humanos Par 17/genética , Deleção de Genes , Genes de RNAr , Humanos , Ligação Proteica , RNA Polimerase III/metabolismo , Fatores de Transcrição TFIII/metabolismo
9.
Pain ; 28(3): 365-368, 1987 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-3494978

RESUMO

Dorsal column stimulation was undertaken in 10 patients referred to the Pain Relief Clinic for management of otherwise intractable angina pectoris. All patients were on maximal medical therapy and were determined to be unsuitable for coronary artery revascularization by the referring cardiologists. Dorsal column stimulation was beneficial in all patients by decreasing the frequency and severity of anginal attacks. The mechanism of action of dorsal column stimulation in this condition is uncertain.


Assuntos
Angina Pectoris/terapia , Terapia por Estimulação Elétrica/métodos , Medula Espinal/fisiologia , Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Humanos
10.
Nat Commun ; 5: 3818, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24784029

RESUMO

Polycomb Repressive Complex 1 and histone H2A ubiquitination (ubH2A) contribute to embryonic stem cell (ESC) pluripotency by repressing lineage-specific gene expression. However, whether active deubiquitination co-regulates ubH2A levels in ESCs and during differentiation is not known. Here we report that Usp16, a histone H2A deubiquitinase, regulates H2A deubiquitination and gene expression in ESCs, and importantly, is required for ESC differentiation. Usp16 knockout is embryonic lethal in mice, but does not affect ESC viability or identity. Usp16 binds to the promoter regions of a large number of genes in ESCs, and Usp16 binding is inversely correlated with ubH2A levels, and positively correlates with gene expression levels. Intriguingly, Usp16(-/-) ESCs fail to differentiate due to ubH2A-mediated repression of lineage-specific genes. Finally, Usp16, but not a catalytically inactive mutant, rescues the differentiation defects of Usp16(-/-) ESCs. Therefore, this study identifies Usp16 and H2A deubiquitination as critical regulators of ESC gene expression and differentiation.


Assuntos
Linhagem da Célula , Células-Tronco Embrionárias/metabolismo , Ubiquitina Tiolesterase/fisiologia , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Feminino , Genes Letais , Masculino , Camundongos , Camundongos Knockout , Ligação Proteica , Ubiquitina Tiolesterase/metabolismo
11.
Nat Cell Biol ; 12(1): 94-9; sup pp 1-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20010811

RESUMO

The 16 kilobase (kb) heterochromatin domain between the chicken beta-globin locus and the folate receptor gene is used here to study the roles of RNA-dependent mechanisms and histone modifications in the maintenance of a constitutive heterochromatic structure. Inhibition of histone deacetylase (HDAC) activity is shown to both increase intergenic transcription and render the heterochromatin more accessible to MspI digestion. We show that short interfering RNA (siRNA)-mediated downregulation of the enzyme Dicer has similar effects: histone acetylation is increased, transcript levels rise and the compact chromatin structure becomes more accessible to restriction endonucleases. We also show that the chicken Argonaute 2 homologue binds the 16 kb region in a Dicer-dependent manner and is necessary for a condensed chromatin structure. Heterochromatic domains of this kind, which are widely distributed in vertebrate genomes, thus seem to be maintained in their condensed form by highly conserved mechanisms.


Assuntos
Proteínas de Transporte/genética , Heterocromatina/genética , Histona Desacetilases/metabolismo , Receptores de Superfície Celular/genética , Ribonuclease III/metabolismo , Transcrição Gênica , Globinas beta/genética , Acetilação , Animais , Células Cultivadas , Galinhas , Imunoprecipitação da Cromatina , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Receptores de Folato com Âncoras de GPI , Heterocromatina/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histonas/metabolismo , Região de Controle de Locus Gênico , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonuclease III/antagonistas & inibidores , Ribonuclease III/genética
12.
RNA ; 10(2): 299-307, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14730028

RESUMO

Retroviruses specifically package two copies of their RNA genome in each viral particle, along with some small cellular RNAs, including tRNAs and 7S L RNA. We show here that Rous sarcoma virus (RSV) also packages U6 snRNA at approximately one copy per virion. In addition, trace amounts of U1 and U2 snRNAs were detected in purified virus by Northern blotting. U6 snRNA comigrated with the RSV 70S genomic RNA dimer on sucrose gradients. We observed reverse transcription of U6 snRNA in an endogenous reaction in which RSV particles were the source of both reverse transcriptase and RNA substrates. This finding led us to examine mammalian genomic sequences for the presence of snRNA pseudogenes. A survey of the human, mouse, and rat genomes revealed a high number of spliceosomal snRNA pseudogenes. U6 pseudogenes were the most abundant, with approximately 200 copies in each genome. In the human genome, 67% of U6 snRNA pseudogenes, and a significant number of the other snRNA pseudogenes, were associated with LINE, SINE, or retroviral LTR repeat sequences. We propose that the packaging of snRNAs in retroviral particles leads to their reverse transcription in an infected cell and the integration of snRNA/viral recombinants into the host genome.


Assuntos
Vírus do Sarcoma Aviário/genética , Pseudogenes/fisiologia , RNA Nuclear Pequeno/metabolismo , Transcrição Gênica/fisiologia , Animais , Vírus do Sarcoma Aviário/metabolismo , Humanos , Elementos Nucleotídeos Longos e Dispersos , Camundongos , Ratos , Análise de Sequência de DNA , Elementos Nucleotídeos Curtos e Dispersos , Sequências Repetidas Terminais
13.
RNA ; 10(9): 1388-98, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15317975

RESUMO

Control of Rous sarcoma virus RNA splicing depends in part on the interaction of U1 and U11 snRNPs with an intronic RNA element called the negative regulator of splicing (NRS). A 23mer RNA hairpin (NRS23) of the NRS directly binds U1 and U11 snRNPs. Mutations that disrupt base-pairing between the loop of NRS23 and U1 snRNA abolish its negative control of splicing. We have determined the solution structure of NRS23 using NOEs, torsion angles, and residual dipolar couplings that were extracted from multidimensional heteronuclear NMR spectra. Our structure showed that the 6-bp stem of NRS23 adopts a nearly A-form duplex conformation. The loop, which consists of 11 residues according to secondary structure probing, was in a closed conformation. U913, the first residue in the loop, was bulged out or dynamic, and loop residues G914-C923, G915-U922, and U916-A921 were base-paired. The remaining UUGU tetraloop sequence did not adopt a stable structure and appears flexible in solution. This tetraloop differs from the well-known classes of tetraloops (GNRA, CUYG, UNCG) in terms of its stability, structure, and function. Deletion of the bulged U913, which is not complementary to U1 snRNA, increased the melting temperature of the RNA hairpin. This hyperstable hairpin exhibited a significant decrease in binding to U1 snRNP. Thus, the structure of the NRS RNA, as well as its sequence, is important for interaction with U1 snRNP and for splicing suppression.


Assuntos
Vírus do Sarcoma Aviário/genética , Conformação de Ácido Nucleico , Splicing de RNA , RNA Nuclear Pequeno/química , RNA Viral/química , RNA Viral/genética , Pareamento de Bases/genética , Sequência de Bases , Sítios de Ligação/genética , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutação/genética , Retroviridae/genética , Ribonucleoproteína Nuclear Pequena U1/fisiologia , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA