Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMJ Glob Health ; 7(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264317

RESUMO

The spread of infectious diseases such as COVID-19 presents many challenges to healthcare systems and infrastructures across the world, exacerbating inequalities and leaving the world's most vulnerable populations at risk. Epidemiological modelling is vital to guiding evidence-informed or data-driven decision making. In forced displacement contexts, and in particular refugee and internally displaced people (IDP) settlements, it meets several challenges including data availability and quality, the applicability of existing models to those contexts, the accurate modelling of cultural differences or specificities of those operational settings, the communication of results and uncertainties, as well as the alignment of strategic goals between diverse partners in complex situations. In this paper, we systematically review the limited epidemiological modelling work applied to refugee and IDP settlements so far, and discuss challenges and identify lessons learnt from the process. With the likelihood of disease outbreaks expected to increase in the future as more people are displaced due to conflict and climate change, we call for the development of more approaches and models specifically designed to include the unique features and populations of refugee and IDP settlements. To strengthen collaboration between the modelling and the humanitarian public health communities, we propose a roadmap to encourage the development of systems and frameworks to share needs, build tools and coordinate responses in an efficient and scalable manner, both for this pandemic and for future outbreaks.


Assuntos
COVID-19 , Doenças Transmissíveis , Refugiados , Doenças Transmissíveis/epidemiologia , Humanos , Pandemias , SARS-CoV-2
2.
BMJ Glob Health ; 5(12)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33303516

RESUMO

BACKGROUND: In the absence of effective treatments or vaccines, non-pharmaceutical interventions are the mainstay of control in the COVID-19 pandemic. Refugee populations in displacement camps live under adverse conditions that are likely to favour the spread of disease. To date, only a few cases of COVID-19 have appeared in refugee camps, and whether feasible non-pharmaceutical interventions can prevent the spread of the SARS-CoV-2 virus in such settings remains untested. METHODS: We constructed the first spatially explicit agent-based model of a COVID-19 outbreak in a refugee camp, and applied it to evaluate feasible non-pharmaceutical interventions. We parameterised the model using published data on the transmission rates and progression dynamics of COVID-19, and demographic and spatial data from Europe's largest refugee camp, the Moria displacement camp on Lesbos, Greece. We simulated COVID-19 epidemics with and without four feasible interventions. RESULTS: Spatial subdivision of the camp ('sectoring') was able to 'flatten the curve', reducing peak infection by up to 70% and delaying peak infection by up to several months. The use of face masks coupled with the efficient isolation of infected individuals reduced the overall incidence of infection, and sometimes averted epidemics altogether. These interventions must be implemented quickly in order to be maximally effective. Lockdowns had only small effects on COVID-19 dynamics. CONCLUSIONS: Agent-based models are powerful tools for forecasting the spread of disease in spatially structured and heterogeneous populations. Our findings suggest that feasible interventions can slow the spread of COVID-19 in a refugee camp setting, and provide an evidence base for camp managers planning intervention strategies. Our model can be modified to study other closed populations at risk from COVID-19 or future epidemics.


Assuntos
COVID-19/prevenção & controle , Surtos de Doenças/prevenção & controle , Campos de Refugiados , COVID-19/epidemiologia , COVID-19/transmissão , Grécia/epidemiologia , Humanos , Modelos Teóricos , Fatores de Risco , SARS-CoV-2
3.
Ecol Evol ; 6(19): 7113-7125, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28725386

RESUMO

Sexual imprinting is the learning of a mate preference by direct observation of the phenotype of another member of the population. Sexual imprinting can be paternal, maternal, or oblique if individuals learn to prefer the phenotypes of their fathers, mothers, or other members of the population, respectively. Which phenotypes are learned can affect trait evolution and speciation rates. "Good genes" models of polygynous systems predict that females should evolve to imprint on their fathers, because paternal imprinting helps females to choose mates that will produce offspring that are both viable and sexy. Sexual imprinting by males has been observed in nature, but a theory for the evolution of sexual imprinting by males does not exist. We developed a good genes model to study the conditions under which sexual imprinting by males or by both sexes can evolve and to ask which sexual imprinting strategies maximize the fitness of the choosy sex. We found that when only males imprint, maternal imprinting is the most advantageous strategy. When both sexes imprint, it is most advantageous for both sexes to use paternal imprinting. Previous theory suggests that, in a given population, either males or females but not both will evolve choosiness in mating. We show how environmental change can lead to the evolution of sexual imprinting behavior by both sexes in the same population.

4.
Evolution ; 65(9): 2592-605, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21884058

RESUMO

There are now a number of well-studied cases in which hybridization between closely related sympatric species has increased, sometimes resulting in the replacement of species pairs by hybrid swarms. Many of these cases have been linked to anthropogenic environmental change, but the mechanisms leading from environmental change to species collapse, and the long-term effects of hybridization on species pairs, remain poorly understood. We used an individual-based stochastic simulation model to explore the conditions under which disturbances that weaken premating barriers to reproduction patterns between sympatric species might lead to increased hybridization and to species collapse. Disturbances often resulted in bouts of hybridization, but in many cases strong reproductive isolation spontaneously reemerged. This was sometimes true even after hybrid swarms had replaced parental species. The reemergence of species pairs was most likely when disturbances were of short duration. Counterintuitively, incipient species pairs were more likely to reemerge after strong but temporary disturbances than after weaker disturbances of the same duration. Even temporary bouts of hybridization often led to substantial homogenization of species pairs. This suggests that ecosystem managers may be able to refill ecological niches, but in general will not be able to resurrect lost species after species collapse.


Assuntos
Ecossistema , Peixes/genética , Especiação Genética , Hibridização Genética , Plantas/genética , Isolamento Reprodutivo , Animais , Evolução Biológica , Feminino , Masculino , Modelos Genéticos , Reprodução , Processos Estocásticos , Simpatria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA