RESUMO
BACKGROUND: Ankylosing spondylitis (AS) is characterised by immune-mediated arthritis and osteoproliferation, ultimately leading to joint ankylosis. Whether inflammation is necessary for osteoproliferation is controversial, fuelled by the unclear efficacy of anti-inflammatory treatments on radiographic progression. In proteoglycan-induced spondylitis (PGISp), a mouse model of AS, inflammation is the prerequisite for osteoproliferation as osteoproliferation was only observed following inflammation-driven intervertebral disc (IVD) destruction. We hypothesised that early intervention with a potent anti-inflammatory therapy would protect IVD integrity and consequently alter disease progression. METHODS: PGISp mice received vehicle or a combination of etanercept (ETN) plus prednisolone (PRD) therapy for 2 or 6 weeks initiated at an early disease stage. Peripheral arthritis was scored longitudinally. Spinal disease was assessed using a semi-quantitative histological scoring regimen including inflammation, joint destruction and excessive tissue formation. RESULTS: ETN + PRD therapy significantly delayed the onset of peripheral arthritis. IVD integrity was significantly protected when treatment was commenced in early disease. Six-weeks of treatment resulted in trends towards reductions in intervertebral joint damage and excessive tissue formation. IVD score distribution was dichotomized, likely reflecting the extent of axial disease at initiation of therapy. In the sub-group of mice with high IVD destruction scores, ETN + PRD treatment significantly reduced IVD destruction severity, inflammation and bone erosion and reduced cartilage damage and excessive tissue formation. CONCLUSIONS: Early intervention with anti-inflammatory treatment not only improved inflammatory symptoms but also ameliorated structural damage of spine in PGISp mice. This preclinical observation suggests that early anti-inflammatory intervention may slow radiographic progression in AS patients.
Assuntos
Anti-Inflamatórios/administração & dosagem , Modelos Animais de Doenças , Proteoglicanas/toxicidade , Espondilite Anquilosante/induzido quimicamente , Espondilite Anquilosante/tratamento farmacológico , Animais , Esquema de Medicação , Quimioterapia Combinada , Etanercepte/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Prednisolona/administração & dosagem , Espondilite Anquilosante/patologiaRESUMO
Rheumatoid arthritis (RA) is one of the most common autoimmune disorders characterized by the chronic and progressive inflammation of various organs, most notably the synovia of joints leading to joint destruction, a shorter life expectancy, and reduced quality of life. Although we have substantial information about the pathophysiology of the disease with various groups of immune cells and soluble mediators identified to participate in the pathogenesis, several aspects of the altered immune functions and regulation in RA remain controversial. Animal models are especially useful in such scenarios. Recently research focused on IL-17 and IL-17 producing cells in various inflammatory diseases such as in RA and in different rodent models of RA. These studies provided occasionally contradictory results with IL-17 being more prominent in some of the models than in others; the findings of such experimental setups were sometimes inconclusive compared to the human data. The aim of this review is to summarize briefly the recent advancements on the role of IL-17, particularly in the different rodent models of RA.
Assuntos
Artrite Reumatoide/metabolismo , Doenças Autoimunes/metabolismo , Interleucina-17/metabolismo , Células Th17/metabolismo , Animais , Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Modelos Animais de Doenças , HumanosRESUMO
Th cytokines IFN-γ and IL-17 are linked to the development of autoimmune disease. In models of rheumatoid arthritis, that is, proteoglycan (PG)-induced arthritis, IFN-γ is required, whereas in collagen-induced arthritis, IL-17 is necessary for development of arthritis. In this study we show that the route of immunization determines the requirement for either IFN-γ or IL-17 in arthritis. Intraperitoneal immunization with PG induces a CD4(+) T cell IFN-γ response with little IL-17 in the spleen and peripheral lymph nodes. However, s.c. immunization induces both an IFN-γ and an IL-17 CD4(+) T cell response in spleen and lymph nodes. The failure to induce a CD4(+) T cell IL-17 response after i.p. immunization is associated with T cell priming, as naive T cells activated in vitro were fully capable of producing IL-17. Moreover, PG-induced arthritis is converted from an IFN-γ to an IL-17-mediated disease by altering the route of immunization from i.p. to s.c. The histological appearance of joint inflammation (cellular inflammation and bone erosion) is similar in the i.p. versus s.c. immunized mice despite the presence of CD4(+) T cells producing IL-17 in joint tissues only after s.c. immunization. These data indicate a critical role for the site of initial T cell priming and the Th cytokines required for susceptibility to arthritis. Our findings suggest that T cell activation at different anatomical sites in rheumatoid arthritis patients may skew the T cells toward production of either IFN-γ or IL-17.
Assuntos
Artrite Experimental/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos/imunologia , Antígenos/metabolismo , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Diferenciação Celular , Citocinas/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Humanos , Interferon gama/biossíntese , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Proteoglicanas/efeitos adversos , Células Th17/citologiaRESUMO
BACKGROUND: No treatment to date is available which specifically targets bone formation in ankylosing spondylitis (AS). Several recent studies have shown that sclerostin (SOST), a Wnt inhibitor specific to osteocytes and chondrocytes, is down-regulated in AS patients. This suggests Wnt signalling may be upregulated, and application of exogenous recombinant SOST (rSOST) may inhibit Wnt signalling and slow pathological bone formation. METHODS: The proteoglycan-induced spondylitis (PGISp) mouse model in which we have previously demonstrated downregulated SOST expression, was used for this study. Mice were injected with 2.5 ug rSOST/day for a period of 8 weeks following induction of disease. Axial skeleton disease development was assessed by histology and skeletal changes examined using DEXA. RESULTS: rSOST treatment had no effect on peripheral or axial disease development, bone density or disease severity. Injected rSOST was stable over 8 h and residual levels were evident 24 h after injection, resulting in a cumulative increase in SOST serum levels over the treatment time course. Immunohistochemical examination of SOST levels within the joints in non-rSOST treated PGISp mice showed a significant decrease in the percentage of positive osteocytes in the unaffected joints compared to the affected joints, while no difference was seen in rSOST treated mice. This suggests that rSOST treatment increases the number of SOST-positive osteocytes in unaffected joints but not affected joints, despite having no impact on the number of joints affected by disease. CONCLUSIONS: Although not disease-modifying, rSOST treatment did appear to regulate SOST levels in the joints suggesting biological activity. Further dose response studies are required and SOST may require modifications to improve its bone targeting ability in order to affect tissue formation to a meaningful level in this model.
Assuntos
Proteínas Morfogenéticas Ósseas/administração & dosagem , Modelos Animais de Doenças , Progressão da Doença , Espondilite Anquilosante/tratamento farmacológico , Espondilite Anquilosante/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Feminino , Marcadores Genéticos , Células HEK293 , Humanos , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Resultado do TratamentoRESUMO
The covalent transfer of heavy chains (HCs) from inter-α-inhibitor (IαI) to hyaluronan (HA) via the protein product of tumor necrosis factor-stimulated gene-6 (TSG-6) forms the HC-HA complex, a pathological form of HA that promotes the adhesion of leukocytes to HA matrices. The transfer of HCs to high molecular weight (HMW) HA is a reversible event whereby TSG-6 can shuffle HCs from one HA molecule to another. Therefore, HMW HA can serve as both an HC acceptor and an HC donor. In the present study, we show that transfer of HCs to low molecular weight HA oligosaccharides is an irreversible event where subsequent shuffling does not occur, i.e. HA oligosaccharides from 8 to 21 monosaccharide units in length can serve as HC acceptors, but are unable to function as HC donors. We show that the HC-HA complex is present in the synovial fluid of mice subjected to systemic and monoarticular mouse models of rheumatoid arthritis. Furthermore, we demonstrate that HA oligosaccharides can be used, with TSG-6, to irreversibly shuffle HCs from pathological, HMW HC-HA to HA oligosaccharides, thereby restoring HC-HA matrices from the inflamed joint to their normal state, unmodified with HCs. This process was also effective for HC-HA in the synovial fluid of human rheumatoid arthritis patients (in vitro).
Assuntos
Moléculas de Adesão Celular/metabolismo , Ácido Hialurônico/química , Oligossacarídeos/química , alfa-Globulinas/química , Animais , Carboidratos/química , Eletroforese/métodos , Matriz Extracelular/metabolismo , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Inflamação , Cinética , Leucócitos/metabolismo , Camundongos , Modelos Moleculares , Conformação Molecular , Proteínas Recombinantes/químicaRESUMO
An increasing number of studies show that besides the inherited genetic architecture (that is, genomic DNA), various environmental factors significantly contribute to the etiology of rheumatoid arthritis. Epigenetic factors react to external stimuli and form bridges between the environment and the genetic information-harboring DNA. Epigenetic mechanisms are implicated in the final interpretation of the encoded genetic information by regulating gene expression, and alterations in their profile influence the activity of the immune system. Overall, epigenetic mechanisms further increase the well-known complexity of rheumatoid arthritis by providing additional subtle contributions to rheumatoid arthritis susceptibility. Although there are controversies regarding the involvement of epigenetic and genetic factors in rheumatoid arthritis etiology, it is becoming obvious that the two systems (genetic and epigenetic) interact with each other and are ultimately responsible for rheumatoid arthritis development. Here, epigenetic factors and mechanisms involved in rheumatoid arthritis are reviewed and new, potential therapeutic targets are discussed.
Assuntos
Artrite Reumatoide/etiologia , Artrite Reumatoide/genética , Epigênese Genética/genética , Animais , Artrite Reumatoide/diagnóstico , Cromatina/genética , Metilação de DNA/genética , Humanos , Mutação/genéticaRESUMO
OBJECTIVE: To identify epigenetic factors that are implicated in the pathogenesis of rheumatoid arthritis (RA), and to explore the therapeutic potential of the targeted inhibition of these factors. METHODS: Polymerase chain reaction (PCR) arrays were used to investigate the expression profile of genes that encode key epigenetic regulator enzymes. Mononuclear cells from RA patients and mice were monitored for gene expression changes, in association with arthritis development in murine models of RA. Selected genes were further characterized by quantitative reverse transcription-PCR, Western blot, and flow cytometry methods. The targeted inhibition of the up-regulated enzymes was studied in arthritic mice. RESULTS: A set of genes with arthritis-specific expression was identified by the PCR arrays. Aurora kinases A and B, both of which were highly expressed in arthritic mice and treatment-naive RA patients, were selected for detailed analysis. Elevated aurora kinase expression was accompanied by increased phosphorylation of histone H3, which promotes proliferation of T lymphocytes. Treatment with VX-680, a pan-aurora kinase inhibitor, promoted B cell apoptosis, provided significant protection against disease onset, and attenuated inflammatory reactions in arthritic mice. CONCLUSION: Arthritis development is accompanied by changes in expression of a number of epigenome-modifying enzymes. Drug-induced down-regulation of the aurora kinases, among other targets, seems to be sufficient to treat experimental arthritis. Development of new therapeutics that target aurora kinases can potentially improve RA management.
Assuntos
Artrite Experimental/enzimologia , Artrite Reumatoide/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Artrite Experimental/genética , Artrite Experimental/prevenção & controle , Artrite Reumatoide/genética , Aurora Quinases , Linfócitos B/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Epigênese Genética , Feminino , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Fosforilação/genética , Fosforilação/fisiologia , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/efeitos dos fármacos , Regulação para CimaRESUMO
BACKGROUND: Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of innate immune cells with a granulocyte-like or monocyte-like phenotype and a unique ability to suppress T-cell responses. MDSCs have been shown to accumulate in cancer patients, but recent studies suggest that these cells are also present in humans and animals suffering from autoimmune diseases. We previously identified MDSCs in the synovial fluid (SF) of mice with experimental autoimmune arthritis. The goal of the present study was to identify MDSCs in the SF of patients with rheumatoid arthritis (RA). METHODS: RA SF cells were studied by flow cytometry using antibodies to MDSC cell surface markers as well as by analysis of cell morphology. The suppressor activity of RA SF cells toward autologous peripheral blood T cells was determined ex vivo. We employed both antigen-nonspecific (anti-CD3/CD28 antibodies) and antigen-specific (allogeneic cells) induction systems to test the effects of RA SF cells on the proliferation of autologous T cells. RESULTS: SF from RA patients contained MDSC-like cells, the majority of which showed granulocyte (neutrophil)-like phenotype and morphology. RA SF cells significantly suppressed the proliferation of anti-CD3/CD28-stimulated autologous T cells upon co-culture. When compared side by side, RA SF cells had a more profound inhibitory effect on the alloantigen-induced than the anti-CD3/CD28-induced proliferation of autologous T cells. CONCLUSION: MDSCs are present among RA SF cells that are commonly regarded as inflammatory neutrophils. Our results suggest that the presence of neutrophil-like MDSCs in the SF is likely beneficial, as these cells have the ability to limit the expansion of joint-infiltrating T cells in RA.
Assuntos
Artrite Reumatoide/imunologia , Imunidade Inata/imunologia , Leucócitos Mononucleares/imunologia , Líquido Sinovial/citologia , Líquido Sinovial/imunologia , Linfócitos T/imunologia , Adulto , Artrite Reumatoide/patologia , Técnicas de Cocultura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos PilotoRESUMO
T cells orchestrate joint inflammation in rheumatoid arthritis (RA), but B cells/B cell-derived factors are also involved in disease pathogenesis. The goal of this study was to understand the role of antigen-specific T and B cells in the pathological events of arthritis, which is impossible to study in humans due to the small number of antigen-specific cells. To determine the significance of antigen-specific lymphocytes and antibodies in the development of an autoimmune mouse model of RA, we generated TCR transgenic (TCR-Tg) mice specific for the dominant arthritogenic epitope of cartilage proteoglycan (PG) and performed a series of combined transfers of T cells, B cells and autoantibodies into BALB/c.Scid mice. The adoptive transfer of highly purified T cells from naive TCR-Tg, arthritic TCR-Tg or arthritic wild-type mice induced arthritis in SCID recipients, but the onset and severity of the disease were dependent on the sequential events of the T cell-supported reconstitution of PG-specific B cells and autoantibodies. The presence of activated PG-specific T cells was critical for disease induction, establishing a unique milieu for the selective homeostasis of autoantibody-producing B cells. In this permissive environment, anti-PG autoantibodies bound to cartilage and induced activation of the complement cascade, leading to irreversible cartilage destruction in affected joints. These findings may lead to a better understanding of the complex molecular and cellular mechanisms of RA.
Assuntos
Artrite Reumatoide/imunologia , Autoanticorpos/imunologia , Linfócitos B/imunologia , Homeostase/imunologia , Linfócitos T/imunologia , Transferência Adotiva , Agrecanas/imunologia , Animais , Formação de Anticorpos , Artrite Experimental/imunologia , Autoantígenos/imunologia , Humanos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Camundongos TransgênicosRESUMO
OBJECTIVE: To determine whether myeloid cells (such as granulocytes) present in the synovial fluid (SF) of arthritic joints have an impact on adaptive immunity. Specifically, we investigated the effects of SF cells harvested from the joints of mice with proteoglycan-induced arthritis (PGIA), on dendritic cell (DC) maturation and antigen-specific T cell proliferation. METHODS: We monitored DC maturation (MHCII and CD86 expression) by flow cytometry upon coculture of DCs with SF cells or spleen myeloid cells from mice with PGIA. The effects of these myeloid cells on T cell proliferation were studied using T cells purified from PG-specific T cell receptor (TCR)-transgenic (Tg) mice. Phenotype analysis of myeloid cells was performed by immunostaining, reverse transcription-polymerase chain reaction, Western blotting, and biochemical assays. RESULTS: Inflammatory SF cells significantly suppressed the maturation of DCs upon coculture. PG-TCR-Tg mouse T cells cultured with antigen-loaded DCs showed dramatic decreases in proliferation in the presence of SF cells. Spleen myeloid cells from arthritic mice did not have suppressive effects. SF cells were unable to suppress CD3/CD28-stimulated proliferation of the same T cells, suggesting a DC-dependent mechanism. SF cells exhibited all of the characteristics of myeloid-derived suppressor cells (MDSCs) and exerted suppression primarily through the production of nitric oxide and reactive oxygen species by granulocyte-like cells. CONCLUSION: SF in the joints of mice with PGIA contains a population of granulocytic MDSCs that potently suppress DC maturation and T cell proliferation. These MDSCs have the potential to limit the expansion of autoreactive T cells, thus breaking the vicious cycle of autoimmunity and inflammation.
Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Proliferação de Células , Células Dendríticas/imunologia , Células Mieloides/imunologia , Líquido Sinovial/imunologia , Linfócitos T/imunologia , Animais , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Células Mieloides/citologia , Células Mieloides/metabolismo , Líquido Sinovial/citologia , Líquido Sinovial/metabolismo , Linfócitos T/metabolismoRESUMO
OBJECTIVE: The spondylarthritides (such as ankylosing spondylitis) are multisystem inflammatory diseases that frequently result in uveitis. Despite the common co-occurrence of uveitis with arthritis, there has been no explanation for the susceptibility of the eye to inflammation. Using an innovative intravital videomicroscopic approach, we discovered the coexistence of uveitis with axial and peripheral joint inflammation in mice immunized with cartilage proteoglycan (PG). The aim of this study was to elucidate the characteristics of uveitis and test the impact of interferon-γ (IFNγ) deficiency on the eye versus the joint and spine. METHODS: Female T cell receptor (TCR)-transgenic mice or IFNγ-knockout mice crossed to TCR-transgenic mice were immunized with PG. Uveitis was assessed by intravital videomicroscopy and histology. The clinical and histopathologic severity of arthritis and spondylitis were evaluated. The bone remodeling process within the spine was assessed by whole-body near-infrared imaging. Immunoblotting and immunofluorescence staining were used to examine the expression of PG and ADAMTS-5 and to examine the cellular composition of eyes with uveitis. RESULTS: PG neoepitopes along with the aggrecanase ADAMTS-5 were present in the eye, as they were the joint. Anterior uveitis developed in response to PG immunization. The cellular infiltrate consisted mainly of neutrophils and eosinophils. Unexpectedly, IFNγ deficiency markedly exacerbated uveitis while ameliorating joint and spine disease, indicating divergent mechanisms that drive diseases in the eye versus the joints and spine. CONCLUSION: This study provides the first detailed description of a murine disease model in which uveitis coincides with arthritis and spondylitis. Our observations provide a great opportunity for understanding the pathogenesis of a relatively common but poorly understood disease.
Assuntos
Interferon gama/metabolismo , Espondilartrite/patologia , Uveíte Anterior/patologia , Proteínas ADAM/metabolismo , Agrecanas/imunologia , Agrecanas/metabolismo , Agrecanas/farmacologia , Animais , Cartilagem/imunologia , Cartilagem/metabolismo , Modelos Animais de Doenças , Epitopos , Olho/metabolismo , Olho/patologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Espondilartrite/imunologia , Espondilartrite/metabolismo , Uveíte Anterior/imunologia , Uveíte Anterior/metabolismoRESUMO
OBJECTIVE: Synovial inflammation, a feature of both osteoarthritis (OA) and meniscal injury, is hypothesized to be triggered in part via stimulation of Toll-like receptors (TLRs). We undertook this study to test whether a TLR-2- or TLR-4-stimulating factor in synovial fluid (SF) from patients with early knee OA with meniscal injury could lead to inflammatory activation of synoviocytes. METHODS: SF was obtained from patients with early OA cartilage damage undergoing arthroscopic meniscal procedures. SF was used to stimulate primary cultures of fibroblast-like synoviocytes (FLS) and cell lines transfected with TLR-2 or TLR-4. SF was used either alone or in combination with a TLR-2 stimulus (palmitoyl-3-cysteine-serine-lysine-4 [Pam3CSK4]) or a TLR-4 stimulus (lipopolysaccharide [LPS]). In blocking experiments, SF was preincubated with anti-CD14 antibody. RESULTS: SF from these patients did not stimulate interleukin-8 (IL-8) release from TLR transfectants. Compared with SF on its own, SF (at concentrations of 0.09-25%) in combination with TLR-2 or TLR-4 ligands resulted in significant augmentation of IL-8 release from both transfectants and primary FLS. Soluble CD14 (sCD14), a coreceptor for TLRs, was measured in SF from patients with early OA at levels comparable to those in patients with advanced OA and patients with rheumatoid arthritis. Blockade with anti-CD14 antibody abolished the ability of SF to augment IL-8 production in response to LPS, and diminished Pam3CSK4 responses. CONCLUSION: SF augments FLS responses to TLR-2 and TLR-4 ligands. This effect was largely due to sCD14. Our results demonstrate that sCD14 in the setting of OA and meniscal injury sensitizes FLS to respond to inflammatory stimuli such as TLR ligands.
Assuntos
Receptores de Lipopolissacarídeos/metabolismo , Osteoartrite do Joelho/metabolismo , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Idoso , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Feminino , Humanos , Lipopeptídeos/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/patologia , Líquido Sinovial/efeitos dos fármacos , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia , Receptor 2 Toll-Like/agonistas , Receptor 4 Toll-Like/agonistasRESUMO
The efficacy of B cell-depletion therapy in rheumatoid arthritis has driven interest in understanding the mechanism. Because the decrease in autoantibodies in rheumatoid arthritis does not necessarily correlate with clinical outcome, other mechanisms may be operative. We previously reported that in proteoglycan-induced arthritis (PGIA), B cell-depletion inhibits autoreactive T cell responses. Recent studies in B cell-depletion therapy also indicate a role for B cells in suppressing regulatory mechanisms. In this study, we demonstrate that B cells inhibited both the expansion and function of T regulatory (Treg) cells in PGIA. Using an anti-CD20 mAb, we depleted B cells from mice with PGIA and assessed the Treg cell population. Compared to control Ab-treated mice, Treg cell percentages were elevated in B cell-depleted mice, with a higher proportion of CD4(+) T cells expressing Foxp3 and CD25. On a per-cell basis, CD4(+)CD25(+) cells from B cell-depleted mice expressed increased amounts of Foxp3 and were significantly more suppressive than those from control Ab-treated mice. The depletion of Treg cells with an anti-CD25 mAb concurrent with B cell-depletion therapy restored the severity of PGIA to levels equal to untreated mice. Although titers of autoantibodies did not recover to untreated levels, CD4(+) T cell recall responses to the immunizing Ag returned as measured by T cell proliferation and cytokine production. Thus, B cells have the capacity to regulate inflammatory responses by enhancing effector T cells along with suppressing Treg cells.
Assuntos
Artrite Experimental/imunologia , Artrite Experimental/prevenção & controle , Subpopulações de Linfócitos B/imunologia , Depleção Linfocítica , Linfopenia/imunologia , Linfopenia/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Artrite Experimental/patologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Artrite Reumatoide/prevenção & controle , Subpopulações de Linfócitos B/patologia , Epitopos de Linfócito T/imunologia , Feminino , Inflamação/imunologia , Inflamação/patologia , Depleção Linfocítica/métodos , Linfopenia/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteoglicanas/administração & dosagem , Proteoglicanas/imunologia , Proteoglicanas/toxicidade , Índice de Gravidade de Doença , Linfócitos T Reguladores/patologiaRESUMO
TSG-6 (TNF-α-stimulated gene/protein 6), a hyaluronan (HA)-binding protein, has been implicated in the negative regulation of inflammatory tissue destruction. However, little is known about the tissue/cell-specific expression of TSG-6 in inflammatory processes, due to the lack of appropriate reagents for the detection of this protein in vivo. Here, we report on the development of a highly sensitive detection system and its use in cartilage proteoglycan (aggrecan)-induced arthritis, an autoimmune murine model of rheumatoid arthritis. We found significant correlation between serum concentrations of TSG-6 and arthritis severity throughout the disease process, making TSG-6 a better biomarker of inflammation than any of the other arthritis-related cytokines measured in this study. TSG-6 was present in arthritic joint tissue extracts together with the heavy chains of inter-α-inhibitor (IαI). Whereas TSG-6 was broadly detectable in arthritic synovial tissue, the highest level of TSG-6 was co-localized with tryptases in the heparin-containing secretory granules of mast cells. In vitro, TSG-6 formed complexes with the tryptases murine mast cell protease-6 and -7 via either heparin or HA. In vivo TSG-6-tryptase association could also be detected in arthritic joint extracts by co-immunoprecipitation. TSG-6 has been reported to suppress inflammatory tissue destruction by enhancing the serine protease-inhibitory activity of IαI against plasmin. TSG-6 achieves this by transferring heavy chains from IαI to HA, thus liberating the active bikunin subunit of IαI. Because bikunin is also present in mast cell granules, we propose that TSG-6 can promote inhibition of tryptase activity via a mechanism similar to inhibition of plasmin.
Assuntos
Artrite/metabolismo , Moléculas de Adesão Celular/metabolismo , Heparina/metabolismo , Triptases/metabolismo , alfa-Globulinas/imunologia , alfa-Globulinas/metabolismo , Animais , Artrite/imunologia , Biomarcadores/metabolismo , Células CHO , Moléculas de Adesão Celular/imunologia , Cricetinae , Cricetulus , Fibrinolisina/imunologia , Fibrinolisina/metabolismo , Heparina/imunologia , Humanos , Articulações/imunologia , Articulações/metabolismo , Camundongos , Triptases/imunologiaRESUMO
Recent imaging studies on intact lymph nodes (LNs) of naïve T cell receptor (TCR)-transgenic mice have reported that T cells reduce their motility upon contact with relevant antigen-presenting cells (APCs). Using in vivo two-photon imaging of T cells in joint-draining (JD) LNs, we examined whether similar changes in T cell motility are observed in wild type mice. Co-transfer of T cells from naïve mice and antigen-experienced T cells from mice with proteoglycan (PG)-induced arthritis into naïve or arthritic recipients resulted in prolonged interactions of antigen-experienced T cells with APCs upon intra-articular antigen (PG) injection, indicating that T cells from arthritic wild type mice recapitulate the motile behavior reported in naïve TCR-transgenic mice. However, naïve T cells also engaged in stable interactions with APCs in the JDLNs of arthritic recipients, suggesting an enhanced ability of APCs in the JDLNs of arthritic hosts to present antigen to either naïve or antigen-experienced T cells.
Assuntos
Células Apresentadoras de Antígenos/patologia , Artrite Experimental/patologia , Artrite Reumatoide/imunologia , Articulações/patologia , Linfonodos/patologia , Linfócitos T/fisiologia , Animais , Apresentação de Antígeno , Células Apresentadoras de Antígenos/imunologia , Artrite Experimental/induzido quimicamente , Artrite Experimental/imunologia , Artrite Reumatoide/patologia , Movimento Celular , Modelos Animais de Doenças , Feminino , Humanos , Injeções Intra-Articulares , Articulações/imunologia , Linfonodos/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência por Excitação Multifotônica , Proteoglicanas/isolamento & purificação , Proteoglicanas/farmacologia , Linfócitos T/imunologia , Linfócitos T/transplanteRESUMO
We found a spontaneous autosomal mutation in a mouse leading to neutrophil infiltration with ulceration in the upper dermis of homozygous offspring. These animals had increased neutrophil numbers, associated with normal lymphocyte count, in peripheral blood and bone marrow, suggesting a myeloproliferative disorder; however, granulocyte precursor proliferation in bone marrow was actually reduced (because circulating neutrophils were less susceptible to apoptosis). Neutrophil infiltration of the skin and other organs and high serum levels of immunoglobulins and autoantibodies, cytokines, and acute-phase proteins were additional abnormalities, all of which could be reduced by high-dose corticosteroid treatment or neutrophil depletion by antibodies. Use of genome-wide screening localized the mutation within an 0.4-Mbp region on mouse chromosome 6. We identified insertion of a B2 element in exon 6 of the Ptpn6 gene (protein tyrosine phosphatase, non-receptor type 6; also known as Shp-1). This insertion involves amino acid substitutions that significantly reduced the enzyme activity in mice homozygous for the mutation. Disease onset was delayed, and the clinical phenotype was milder than the phenotypes of other Ptpn6-mutants described in motheaten (me, mev) mice; we designated this new genotype as Ptpn6(meB2/meB2) and the phenotype as meB2. This new phenotype encompasses an autoinflammatory disease showing similarities to many aspects of the so-called neutrophilic dermatoses, a heterogeneous group of skin diseases with unknown etiology in humans.
Assuntos
Doenças Hereditárias Autoinflamatórias/genética , Neutrófilos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/fisiologia , Dermatopatias/metabolismo , Corticosteroides/farmacologia , Animais , Autoanticorpos/química , Mapeamento Cromossômico , Homozigoto , Humanos , Imunoglobulinas/química , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , MutaçãoRESUMO
We have found a B2 repeat insertion in the gene encoding protein tyrosine phosphatase nonreceptor type 6 (PTPN6) in a mouse that developed a skin disorder with clinical and histopathological features resembling those seen in human neutrophilic dermatoses. Neutrophilic dermatoses are a group of complex heterogeneous autoinflammatory diseases that all demonstrate excessive neutrophil infiltration of the skin. Therefore, we tested the cDNA and genomic DNA sequences of PTPN6 from patients with Sweet's syndrome (SW) and pyoderma gangrenosum and found numerous novel splice variants in different combinations. Isoforms resulting from deletions of exons 2, 5, 11, and 15 and retention of intron 1 or 5 were the most common in a patients with a familial case of SW, who had a neonatal onset of an inflammatory disorder with skin lesions and a biopsy specimen consistent with SW. These isoforms were associated with a heterozygous E441G mutation and a heterozygous 1.7-kbp deletion in the promoter region of the PTPN6 gene. Although full-length PTPN6 was detected in all other patients with either pyoderma gangrenosum or SW, it was always associated with splice variants: a partial deletion of exon 4 with the complete deletion of exon 5, alterations that were not detected in healthy controls. The defect in transcriptional regulation of the hematopoietic PTPN6 appears to be involved in the pathogenesis of certain subsets of the heterogeneous group of neutrophilic dermatoses.
Assuntos
Mutação , Neutrófilos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Dermatopatias/genética , Adulto , Idoso , Processamento Alternativo , Sequência de Bases , Citocinas/metabolismo , Éxons , Feminino , Deleção de Genes , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/química , Proteína Tirosina Fosfatase não Receptora Tipo 6/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
OBJECTIVE: To develop a simplified and relatively inexpensive version of cartilage proteoglycan-induced arthritis (PGIA), an autoimmunity model of rheumatoid arthritis (RA), and to evaluate the extent to which this new model replicates the disease parameters of PGIA and RA. METHODS: Recombinant human G1 domain of human cartilage PG containing "arthritogenic" T cell epitopes was generated in a mammalian expression system and used for immunization of BALB/c mice. The development and progression of arthritis in recombinant human PG G1-immunized mice (designated recombinant human PG G1-induced arthritis [GIA]) was monitored, and disease parameters were compared with those in the parent PGIA model. RESULTS: GIA strongly resembled PGIA, although the clinical symptoms and immune responses in mice with GIA were more uniform than in those with PGIA. Mice with GIA showed evidence of stronger Th1 and Th17 polarization than those with PGIA, and anti-mouse PG autoantibodies were produced in different isotype ratios in the 2 models. Rheumatoid factor (RF) and anti-cyclic citrullinated peptide (anti-CCP) antibodies were detected in both models; however, serum levels of IgG-RF and anti-CCP antibodies were different in GIA and PGIA, and both parameters correlated better with disease severity in GIA than in PGIA. CONCLUSION: GIA is a novel model of seropositive RA that exhibits all of the characteristics of PGIA. Although the clinical phenotypes are similar, GIA and PGIA are characterized by different autoantibody profiles, and the 2 models may represent 2 subtypes of seropositive RA, in which more than 1 type of autoantibody can be used to monitor disease severity and response to treatment.
Assuntos
Agrecanas/farmacologia , Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Cartilagem Articular/imunologia , Proteoglicanas/farmacologia , Agrecanas/imunologia , Análise de Variância , Animais , Artrite Experimental/sangue , Artrite Experimental/induzido quimicamente , Artrite Reumatoide/sangue , Artrite Reumatoide/induzido quimicamente , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Imunização , Interleucinas/sangue , Interleucinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteoglicanas/imunologia , Fator Reumatoide/sangue , Linfócitos TRESUMO
The contribution of the proinflammatory cytokines IFN-gamma and IL-17 to the pathogenesis of experimental arthritis is controversial. In proteoglycan (PG)-induced arthritis (PGIA), severe arthritis is dependent on the production of IFN-gamma, whereas IL-17 is dispensable. In collagen-induced arthritis and Ag-induced arthritis, although high levels of IFN-gamma are secreted, disease is exacerbated in IFN-gamma or IFN-gamma receptor-deficient mice due to the ability of IFN-gamma to suppress IL-17 expression. In the current study, we investigated the effect of IFN-gamma on the IL-17 response and its consequences in PGIA. In PG-immunized IFN-gamma(-/-) mice, despite reduction in arthritis, the PG-specific CD4(+) T cell IL-17 response was significantly increased. Elevated IL-17 contributed to development of arthritis, as disease in IFN-gamma/IL-17(-/-) was significantly reduced in comparison with either IFN-gamma(-/-) or IL-17(-/-) mice. A contribution of IFN-gamma and IL-17 to the development of arthritis was also identified in T-bet(-/-) mice. PG-specific CD4(+) T cells from T-bet(-/-) mice produced reduced IFN-gamma and elevated concentrations of IL-17. Both IFN-gamma and IL-17 contribute to arthritis, as T-bet(-/-) mice lacking IL-17 (T-bet/IL-17(-/-)) were resistant, whereas wild-type, T-bet(-/-), and IL-17(-/-) mice were susceptible to PGIA. T cell proliferation and autoantibody production did not correlate with development of disease; however, expression of cytokines and chemokines in joint tissues demonstrate that IFN-gamma and IL-17 cooperatively contribute to inflammation. These results demonstrate that both IFN-gamma and IL-17 have the potential to induce PGIA, but it is the strength of the IFN-gamma response that regulates the contribution of each of these Th effector cytokines to disease.
Assuntos
Artrite Experimental/imunologia , Mediadores da Inflamação/fisiologia , Interferon gama/fisiologia , Interleucina-17/fisiologia , Proteoglicanas/imunologia , Animais , Artrite Experimental/patologia , Artrite Experimental/prevenção & controle , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Artrite Reumatoide/prevenção & controle , Células Cultivadas , Feminino , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Interferon gama/antagonistas & inibidores , Interferon gama/deficiência , Interleucina-17/biossíntese , Interleucina-17/deficiência , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteoglicanas/administração & dosagem , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismoRESUMO
Rheumatoid arthritis (RA) is a polygenic autoimmune disease primarily affecting the synovial joints. Numerous animal models show similarities to RA in humans; some of them not only mimic the clinical phenotypes but also demonstrate the involvement of homologous genomic regions in RA. This paper compares corresponding non-MHC genomic regions identified in rodent and human genome-wide association studies (GWAS). To date, over 30 non-MHC RA-associated loci have been identified in humans, and over 100 arthritis-associated loci have been identified in rodent models of RA. The genomic regions associated with the disease are designated by the name(s) of the gene having the most frequent and consistent RA-associated SNPs or a function suggesting their involvement in inflammatory or autoimmune processes. Animal studies on rats and mice preferentially have used single sequence length polymorphism (SSLP) markers to identify disease-associated qualitative and quantitative trait loci (QTLs) in the genome of F2 hybrids of arthritis-susceptible and arthritis-resistant rodent strains. Mouse GWAS appear to be far ahead of rat studies, and significantly more mouse QTLs correspond to human RA risk alleles.