Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 187(4): 931-944.e12, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38320549

RESUMO

Differentiation is crucial for multicellularity. However, it is inherently susceptible to mutant cells that fail to differentiate. These mutants outcompete normal cells by excessive self-renewal. It remains unclear what mechanisms can resist such mutant expansion. Here, we demonstrate a solution by engineering a synthetic differentiation circuit in Escherichia coli that selects against these mutants via a biphasic fitness strategy. The circuit provides tunable production of synthetic analogs of stem, progenitor, and differentiated cells. It resists mutations by coupling differentiation to the production of an essential enzyme, thereby disadvantaging non-differentiating mutants. The circuit selected for and maintained a positive differentiation rate in long-term evolution. Surprisingly, this rate remained constant across vast changes in growth conditions. We found that transit-amplifying cells (fast-growing progenitors) underlie this environmental robustness. Our results provide insight into the stability of differentiation and demonstrate a powerful method for engineering evolutionarily stable multicellular consortia.


Assuntos
Escherichia coli , Biologia Sintética , Diferenciação Celular , Escherichia coli/citologia , Escherichia coli/genética , Integrases/metabolismo , Biologia Sintética/métodos , Aptidão Genética , Farmacorresistência Bacteriana
2.
Cell ; 174(3): 649-658.e16, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30033369

RESUMO

Synthetic multicellular systems hold promise as models for understanding natural development of biofilms and higher organisms and as tools for engineering complex multi-component metabolic pathways and materials. However, such efforts require tools to adhere cells into defined morphologies and patterns, and these tools are currently lacking. Here, we report a 100% genetically encoded synthetic platform for modular cell-cell adhesion in Escherichia coli, which provides control over multicellular self-assembly. Adhesive selectivity is provided by a library of outer membrane-displayed nanobodies and antigens with orthogonal intra-library specificities, while affinity is controlled by intrinsic adhesin affinity, competitive inhibition, and inducible expression. We demonstrate the resulting capabilities for quantitative rational design of well-defined morphologies and patterns through homophilic and heterophilic interactions, lattice-like self-assembly, phase separation, differential adhesion, and sequential layering. Compatible with synthetic biology standards, this adhesion toolbox will enable construction of high-level multicellular designs and shed light on the evolutionary transition to multicellularity.


Assuntos
Adesão Celular/fisiologia , Engenharia Metabólica/métodos , Biologia Sintética/métodos , Fenômenos Fisiológicos Bacterianos , Evolução Biológica , Adesão Celular/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Escherichia coli/genética , Biblioteca Gênica , Redes e Vias Metabólicas , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/fisiologia
3.
Nature ; 608(7922): 324-329, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948712

RESUMO

Multicellular systems, from bacterial biofilms to human organs, form interfaces (or boundaries) between different cell collectives to spatially organize versatile functions1,2. The evolution of sufficiently descriptive genetic toolkits probably triggered the explosion of complex multicellular life and patterning3,4. Synthetic biology aims to engineer multicellular systems for practical applications and to serve as a build-to-understand methodology for natural systems5-8. However, our ability to engineer multicellular interface patterns2,9 is still very limited, as synthetic cell-cell adhesion toolkits and suitable patterning algorithms are underdeveloped5,7,10-13. Here we introduce a synthetic cell-cell adhesin logic with swarming bacteria and establish the precise engineering, predictive modelling and algorithmic programming of multicellular interface patterns. We demonstrate interface generation through a swarming adhesion mechanism, quantitative control over interface geometry and adhesion-mediated analogues of developmental organizers and morphogen fields. Using tiling and four-colour-mapping concepts, we identify algorithms for creating universal target patterns. This synthetic 4-bit adhesion logic advances practical applications such as human-readable molecular diagnostics, spatial fluid control on biological surfaces and programmable self-growing materials5-8,14. Notably, a minimal set of just four adhesins represents 4 bits of information that suffice to program universal tessellation patterns, implying a low critical threshold for the evolution and engineering of complex multicellular systems3,5.


Assuntos
Algoritmos , Células Artificiais , Adesão Celular , Lógica , Biologia Sintética , Células Artificiais/citologia , Biofilmes , Humanos , Biologia Sintética/métodos
4.
Proc Natl Acad Sci U S A ; 120(51): e2312651120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38096408

RESUMO

Antibiotic effectiveness depends on a variety of factors. While many mechanistic details of antibiotic action are known, the connection between death rate and bacterial physiology is poorly understood. A common observation is that death rate in antibiotics rises linearly with growth rate; however, it remains unclear how other factors, such as environmental conditions and whole-cell physiological properties, affect bactericidal activity. To address this, we developed a high-throughput assay to precisely measure antibiotic-mediated death. We found that death rate is linear in growth rate, but the slope depends on environmental conditions. Growth under stress lowers death rate compared to nonstressed environments with similar growth rate. To understand stress's role, we developed a mathematical model of bacterial death based on resource allocation that includes a stress-response sector; we identify this sector using RNA-seq. Our model accurately predicts the minimal inhibitory concentration (MIC) with zero free parameters across a wide range of growth conditions. The model also quantitatively predicts death and MIC when sectors are experimentally modulated using cyclic adenosine monophosphate (cAMP), including protection from death at very low cAMP levels. The present study shows that different conditions with equal growth rate can have different death rates and establishes a quantitative relation between growth, death, and MIC that suggests approaches to improve antibiotic efficacy.


Assuntos
Antibacterianos , Fenômenos Fisiológicos Bacterianos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Testes de Sensibilidade Microbiana , Modelos Teóricos
5.
Mol Cell ; 48(1): 52-62, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22902555

RESUMO

Allostery and covalent modification are major means of fast-acting metabolic regulation. Their relative roles in responding to environmental changes remain, however, unclear. Here we examine this issue, using as a case study the rapid decrease in pyruvate kinase flux in yeast upon glucose removal. The main pyruvate kinase isozyme (Cdc19) is phosphorylated in response to environmental cues. It also exhibits positively cooperative (ultrasensitive) allosteric activation by fructose-1,6-bisphosphate (FBP). Glucose removal causes accumulation of Cdc19's substrate, phosphoenolpyruvate. This response is retained in strains with altered protein-kinase-A or AMP-activated-protein-kinase activity or with CDC19 carrying mutated phosphorylation sites. In contrast, yeast engineered with a CDC19 point mutation that ablates FBP-based regulation fail to accumulate phosphoenolpyruvate. They also fail to grow on ethanol and slowly resume growth upon glucose upshift. Thus, while yeast pyruvate kinase is covalently modified in response to glucose availability, its activity is controlled almost exclusively by ultrasensitive allostery.


Assuntos
Piruvato Quinase/metabolismo , Saccharomyces cerevisiae/enzimologia , Regulação Alostérica , Frutosedifosfatos/metabolismo , Genes Fúngicos , Glucose/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Metaboloma , Fosfoenolpiruvato/metabolismo , Fosforilação , Mutação Puntual , Piruvato Quinase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma
6.
Phys Rev Lett ; 116(12): 128102, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27058104

RESUMO

Lateral inhibition represents a well-studied example of biology's ability to self-organize multicellular spatial patterns with single-cell precision. Despite established biochemical mechanisms for lateral inhibition (e.g., Delta-Notch), it remains unclear how cell-cell signaling delays inherent to these mechanisms affect patterning outcomes. We investigate a compact model of lateral inhibition highlighting these delays and find, remarkably, that long delays can ensure defect-free patterning. This effect is underscored by an interplay with synchronous oscillations, cis interactions, and signaling strength. Our results suggest that signaling delays, though previously posited as a source of developmental defects, may in fact be a general regulatory knob for tuning developmental robustness.


Assuntos
Comunicação Celular/fisiologia , Modelos Biológicos , Animais , Arabidopsis , Diferenciação Celular/fisiologia , Drosophila , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Receptores Notch/metabolismo , Transdução de Sinais
7.
Nat Commun ; 12(1): 1788, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741909

RESUMO

Biological regulatory systems, such as cell signaling networks, nervous systems and ecological webs, consist of complex dynamical interactions among many components. Network motif models focus on small sub-networks to provide quantitative insight into overall behavior. However, such models often overlook time delays either inherent to biological processes or associated with multi-step interactions. Here we systematically examine explicit-delay versions of the most common network motifs via delay differential equation (DDE) models, both analytically and numerically. We find many broadly applicable results, including parameter reduction versus canonical ordinary differential equation (ODE) models, analytical relations for converting between ODE and DDE models, criteria for when delays may be ignored, a complete phase space for autoregulation, universal behaviors of feedforward loops, a unified Hill-function logic framework, and conditions for oscillations and chaos. We conclude that explicit-delay modeling simplifies the phenomenology of many biological networks and may aid in discovering new functional motifs.


Assuntos
Algoritmos , Biologia Computacional/métodos , Redes Reguladoras de Genes , Modelos Genéticos , Dinâmica não Linear , Animais , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Humanos , Transdução de Sinais/genética
8.
Curr Opin Genet Dev ; 63: 95-102, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32629326

RESUMO

Synthetic multicellular (MC) systems have the capacity to increase our understanding of biofilms and higher organisms, and to serve as engineering platforms for developing complex products in the areas of medicine, biosynthesis and smart materials. Here we provide an interdisciplinary perspective and review on emerging approaches to engineer and model MC systems. We lay out definitions for key terms in the field and identify toolboxes of standardized parts which can be combined into various MC algorithms to achieve specific outcomes. Many essential parts and algorithms have been demonstrated in some form. As key next milestones for the field, we foresee the improvement of these parts and their adaptation to more biological systems, the demonstration of more complex algorithms, the advancement of quantitative modeling approaches and compilers to support rational MC engineering, and implementation of MC engineering for practical applications.


Assuntos
Padronização Corporal , Diferenciação Celular , Engenharia Genética , Modelos Biológicos , Morfogênese , Biologia Sintética/métodos , Animais
9.
Science ; 361(6408): 1199-1200, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30237343
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA