Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ISME J ; 16(1): 68-77, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34226659

RESUMO

Tropical scleractinian corals support a diverse assemblage of microbial symbionts. This 'microbiome' possesses the requisite functional diversity to conduct a range of nitrogen (N) transformations including denitrification, nitrification, nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA). Very little direct evidence has been presented to date verifying that these processes are active within tropical corals. Here we use a combination of stable isotope techniques, nutrient uptake calculations and captured metagenomics to quantify rates of nitrogen cycling processes in a selection of tropical scleractinian corals. Denitrification activity was detected in all species, albeit with very low rates, signifying limited importance in holobiont N removal. Relatively greater nitrogen fixation activity confirms that corals are net N importers to reef systems. Low net nitrification activity suggests limited N regeneration capacity; however substantial gross nitrification activity may be concealed through nitrate consumption. Based on nrfA gene abundance and measured inorganic N fluxes, we calculated significant DNRA activity in the studied corals, which has important implications for coral reef N cycling and warrants more targeted investigation. Through the quantification and characterisation of all relevant N-cycling processes, this study provides clarity on the subject of tropical coral-associated biogeochemical N-cycling.


Assuntos
Compostos de Amônio , Antozoários , Animais , Desnitrificação , Nitratos , Nitrificação , Nitrogênio
2.
Nat Commun ; 11(1): 1500, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198372

RESUMO

Anthropogenic nutrient discharge to coastal marine environments is commonly associated with excessive algal growth and ecosystem degradation. However in the world's largest coral reef ecosystem, the Great Barrier Reef (GBR), the response to enhanced terrestrial nutrient inputs since European settlement in the 1850's remains unclear. Here we use a 333 year old composite record (1680-2012) of 15N/14N in coral skeleton-bound organic matter to understand how nitrogen cycling in the coastal GBR has responded to increased anthropogenic nutrient inputs. Our major robust finding is that the coral record shows a long-term decline in skeletal 15N/14N towards the present. We argue that this decline is evidence for increased coastal nitrogen fixation rather than a direct reflection of anthropogenic nitrogen inputs. Reducing phosphorus discharge and availability would short-circuit the nitrogen fixation feedback loop and help avoid future acute and chronic eutrophication in the coastal GBR.


Assuntos
Antozoários/fisiologia , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Animais , Recifes de Corais , Ecossistema , Monitoramento Ambiental , Eutrofização , Isótopos , Biologia Marinha , Fósforo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA