RESUMO
Understanding population health disparities is an essential component of equitable precision health efforts. Epidemiology research often relies on definitions of race and ethnicity, but these population labels may not adequately capture disease burdens and environmental factors impacting specific sub-populations. Here, we propose a framework for repurposing data from electronic health records (EHRs) in concert with genomic data to explore the demographic ties that can impact disease burdens. Using data from a diverse biobank in New York City, we identified 17 communities sharing recent genetic ancestry. We observed 1,177 health outcomes that were statistically associated with a specific group and demonstrated significant differences in the segregation of genetic variants contributing to Mendelian diseases. We also demonstrated that fine-scale population structure can impact the prediction of complex disease risk within groups. This work reinforces the utility of linking genomic data to EHRs and provides a framework toward fine-scale monitoring of population health.
Assuntos
Etnicidade/genética , Saúde da População , Bases de Dados Genéticas , Registros Eletrônicos de Saúde , Genômica , Humanos , AutorrelatoRESUMO
Recent studies suggest that heparan sulfate proteoglycans (HSPG) contribute to the predisposition to, protection from, and potential treatment and prevention of Alzheimer's disease (AD). Here, we used electronic health records (EHR) from two different health systems to examine whether heparin therapy was associated with a delayed diagnosis of AD dementia. Longitudinal EHR data from 15,183 patients from the Mount Sinai Health System (MSHS) and 6207 patients from Columbia University Medical Center (CUMC) were used in separate survival analyses to compare those who did or did not receive heparin therapy, had a least 5 years of observation, were at least 65 years old by their last visit, and had subsequent diagnostic code or drug treatment evidence of possible AD dementia. Analyses controlled for age, sex, comorbidities, follow-up duration and number of inpatient visits. Heparin therapy was associated with significant delays in age of clinical diagnosis of AD dementia, including +1.0 years in the MSMS cohort (P < 0.001) and +1.0 years in the CUMC cohort (P < 0.001). While additional studies are needed, this study supports the potential roles of heparin-like drugs and HSPGs in the protection from and prevention of AD dementia.
RESUMO
A combination of emerging genomic and artificial intelligence (AI) techniques may ultimately unlock a deeper understanding of heterogeneity and biological complexities in cardiovascular diseases (CVDs), leading to advances in prognostic guidance and personalized therapies. We discuss the state of AI in cardiovascular genetics, current applications, limitations, and future directions of the field.
Assuntos
Inteligência Artificial , Doenças Cardiovasculares/genética , Genética Médica/métodos , Humanos , Aprendizado de Máquina , Medicina de Precisão/métodosRESUMO
Large language models (LLMs) have significantly impacted various fields with their ability to understand and generate human-like text. This study explores the potential benefits and limitations of integrating LLMs, such as ChatGPT, into haematology practices. Utilizing systematic review methodologies, we analysed studies published after 1 December 2022, from databases like PubMed, Web of Science and Scopus, and assessing each for bias with the QUADAS-2 tool. We reviewed 10 studies that applied LLMs in various haematology contexts. These models demonstrated proficiency in specific tasks, such as achieving 76% diagnostic accuracy for haemoglobinopathies. However, the research highlighted inconsistencies in performance and reference accuracy, indicating variability in reliability across different uses. Additionally, the limited scope of these studies and constraints on datasets could potentially limit the generalizability of our findings. The findings suggest that, while LLMs provide notable advantages in enhancing diagnostic processes and educational resources within haematology, their integration into clinical practice requires careful consideration. Before implementing them in haematology, rigorous testing and specific adaptation are essential. This involves validating their accuracy and reliability across different scenarios. Given the field's complexity, it is also critical to continuously monitor these models and adapt them responsively.
RESUMO
OBJECTIVES: This study aims to assess the performance of a multimodal artificial intelligence (AI) model capable of analyzing both images and textual data (GPT-4V), in interpreting radiological images. It focuses on a range of modalities, anatomical regions, and pathologies to explore the potential of zero-shot generative AI in enhancing diagnostic processes in radiology. METHODS: We analyzed 230 anonymized emergency room diagnostic images, consecutively collected over 1 week, using GPT-4V. Modalities included ultrasound (US), computerized tomography (CT), and X-ray images. The interpretations provided by GPT-4V were then compared with those of senior radiologists. This comparison aimed to evaluate the accuracy of GPT-4V in recognizing the imaging modality, anatomical region, and pathology present in the images. RESULTS: GPT-4V identified the imaging modality correctly in 100% of cases (221/221), the anatomical region in 87.1% (189/217), and the pathology in 35.2% (76/216). However, the model's performance varied significantly across different modalities, with anatomical region identification accuracy ranging from 60.9% (39/64) in US images to 97% (98/101) and 100% (52/52) in CT and X-ray images (p < 0.001). Similarly, pathology identification ranged from 9.1% (6/66) in US images to 36.4% (36/99) in CT and 66.7% (34/51) in X-ray images (p < 0.001). These variations indicate inconsistencies in GPT-4V's ability to interpret radiological images accurately. CONCLUSION: While the integration of AI in radiology, exemplified by multimodal GPT-4, offers promising avenues for diagnostic enhancement, the current capabilities of GPT-4V are not yet reliable for interpreting radiological images. This study underscores the necessity for ongoing development to achieve dependable performance in radiology diagnostics. CLINICAL RELEVANCE STATEMENT: Although GPT-4V shows promise in radiological image interpretation, its high diagnostic hallucination rate (> 40%) indicates it cannot be trusted for clinical use as a standalone tool. Improvements are necessary to enhance its reliability and ensure patient safety. KEY POINTS: GPT-4V's capability in analyzing images offers new clinical possibilities in radiology. GPT-4V excels in identifying imaging modalities but demonstrates inconsistent anatomy and pathology detection. Ongoing AI advancements are necessary to enhance diagnostic reliability in radiological applications.
RESUMO
BACKGROUND: Writing multiple choice questions (MCQs) for the purpose of medical exams is challenging. It requires extensive medical knowledge, time and effort from medical educators. This systematic review focuses on the application of large language models (LLMs) in generating medical MCQs. METHODS: The authors searched for studies published up to November 2023. Search terms focused on LLMs generated MCQs for medical examinations. Non-English, out of year range and studies not focusing on AI generated multiple-choice questions were excluded. MEDLINE was used as a search database. Risk of bias was evaluated using a tailored QUADAS-2 tool. RESULTS: Overall, eight studies published between April 2023 and October 2023 were included. Six studies used Chat-GPT 3.5, while two employed GPT 4. Five studies showed that LLMs can produce competent questions valid for medical exams. Three studies used LLMs to write medical questions but did not evaluate the validity of the questions. One study conducted a comparative analysis of different models. One other study compared LLM-generated questions with those written by humans. All studies presented faulty questions that were deemed inappropriate for medical exams. Some questions required additional modifications in order to qualify. CONCLUSIONS: LLMs can be used to write MCQs for medical examinations. However, their limitations cannot be ignored. Further study in this field is essential and more conclusive evidence is needed. Until then, LLMs may serve as a supplementary tool for writing medical examinations. 2 studies were at high risk of bias. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
Assuntos
Avaliação Educacional , Humanos , Avaliação Educacional/métodos , Redação/normas , Idioma , Educação MédicaRESUMO
Artificial Intelligence, specifically advanced language models such as ChatGPT, have the potential to revolutionize various aspects of healthcare, medical education, and research. In this narrative review, we evaluate the myriad applications of ChatGPT in diverse healthcare domains. We discuss its potential role in clinical decision-making, exploring how it can assist physicians by providing rapid, data-driven insights for diagnosis and treatment. We review the benefits of ChatGPT in personalized patient care, particularly in geriatric care, medication management, weight loss and nutrition, and physical activity guidance. We further delve into its potential to enhance medical research, through the analysis of large datasets, and the development of novel methodologies. In the realm of medical education, we investigate the utility of ChatGPT as an information retrieval tool and personalized learning resource for medical students and professionals. There are numerous promising applications of ChatGPT that will likely induce paradigm shifts in healthcare practice, education, and research. The use of ChatGPT may come with several benefits in areas such as clinical decision making, geriatric care, medication management, weight loss and nutrition, physical fitness, scientific research, and medical education. Nevertheless, it is important to note that issues surrounding ethics, data privacy, transparency, inaccuracy, and inadequacy persist. Prior to widespread use in medicine, it is imperative to objectively evaluate the impact of ChatGPT in a real-world setting using a risk-based approach.
Assuntos
Inteligência Artificial , Humanos , Tomada de Decisão Clínica/métodos , Medicina de Precisão/métodos , Educação Médica/métodosRESUMO
BACKGROUND: Several social determinants of health (SDoH) have been associated with the onset of major depressive disorder (MDD). However, prior studies largely focused on individual SDoH and thus less is known about the relative importance (RI) of SDoH variables, especially in older adults. Given that risk factors for MDD may differ across the lifespan, we aimed to identify the SDoH that was most strongly related to newly diagnosed MDD in a cohort of older adults. METHODS: We used self-reported health-related survey data from 41 174 older adults (50-89 years, median age = 67 years) who participated in the Mayo Clinic Biobank, and linked ICD codes for MDD in the participants' electronic health records. Participants with a history of clinically documented or self-reported MDD prior to survey completion were excluded from analysis (N = 10 938, 27%). We used Cox proportional hazards models with a gradient boosting machine approach to quantify the RI of 30 pre-selected SDoH variables on the risk of future MDD diagnosis. RESULTS: Following biobank enrollment, 2073 older participants were diagnosed with MDD during the follow-up period (median duration = 6.7 years). The most influential SDoH was perceived level of social activity (RI = 0.17). Lower level of social activity was associated with a higher risk of MDD [hazard ratio = 2.27 (95% CI 2.00-2.50) for highest v. lowest level]. CONCLUSION: Across a range of SDoH variables, perceived level of social activity is most strongly related to MDD in older adults. Monitoring changes in the level of social activity may help identify older adults at an increased risk of MDD.
Assuntos
Transtorno Depressivo Maior , Humanos , Idoso , Transtorno Depressivo Maior/diagnóstico , Depressão , Fatores de Risco , Determinantes Sociais da SaúdeRESUMO
We developed and tested a novel template matching approach for signal quality assessment on electrocardiogram (ECG) data. A computational method was developed that uses a sinusoidal approximation to the QRS complex to generate a correlation value at every point of an ECG. The strength of this correlation can be numerically adapted into a 'score' for each segment of an ECG, which can be used to stratify signal quality. The algorithm was tested on lead II ECGs of intensive care unit (ICU) patients admitted to the Mount Sinai Hospital (MSH) from January to July 2020 and on records from the MIT BIH arrhythmia database. The algorithm was found to be 98.9% specific and 99% sensitive on test data from the MSH ICU patients. The routine performs in linear O(n) time and occupies O(1) heap space in runtime. This approach can be used to lower the burden of pre-processing in ECG signal analysis. Given its runtime (O(n)) and memory (O(1)) complexity, there are potential applications for signal quality stratification and arrhythmia detection in wearable devices or smartphones.
Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Humanos , Análise de Fourier , Eletrocardiografia/métodos , Algoritmos , Arritmias Cardíacas/diagnósticoRESUMO
Background and Objectives: Since its invention in the 1970s, the cochlear implant (CI) has been substantially developed. We aimed to assess the trends in the published literature to characterize CI. Materials and Methods: We queried PubMed for all CI-related entries published during 1970-2022. The following data were extracted: year of publication, publishing journal, title, keywords, and abstract text. Search terms belonged to the patient's age group, etiology for hearing loss, indications for CI, and surgical methodological advancement. Annual trends of publications were plotted. The slopes of publication trends were calculated by fitting regression lines to the yearly number of publications. Results: Overall, 19,428 CIs articles were identified. Pediatric-related CI was the most dominant sub-population among the age groups, with the highest rate and slope during the years (slope 5.2 ± 0.3, p < 0.001), while elderly-related CIs had significantly fewer publications. Entries concerning hearing preservation showed the sharpest rise among the methods, from no entries in 1980 to 46 entries in 2021 (slope 1.7 ± 0.2, p < 0.001). Entries concerning robotic surgery emerged in 2000, with a sharp increase in recent years (slope 0.5 ± 0.1, p < 0.001). Drug-eluting electrodes and CI under local-anesthesia have been reported only in the past five years, with a gradual rise. Conclusions: Publications regarding CI among pediatrics outnumbered all other indications, supporting the rising, pivotal role of CI in the rehabilitation of children with sensorineural hearing loss. Hearing-preservation publications have recently rapidly risen, identified as the primary trend of the current era, followed by a sharp rise of robotic surgery that is evolving and could define the next revolution.
Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Criança , Humanos , Idoso , Implante Coclear/métodos , Perda Auditiva/cirurgiaRESUMO
BACKGROUND & AIMS: Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of COVID-19, we investigated intestinal infection with SARS-CoV-2, its effect on pathogenesis, and clinical significance. METHODS: Human intestinal biopsy tissues were obtained from patients with COVID-19 (n = 19) and uninfected control individuals (n = 10) for microscopic examination, cytometry by time of flight analyses, and RNA sequencing. Additionally, disease severity and mortality were examined in patients with and without GI symptoms in 2 large, independent cohorts of hospitalized patients in the United States (N = 634) and Europe (N = 287) using multivariate logistic regressions. RESULTS: COVID-19 case patients and control individuals in the biopsy cohort were comparable for age, sex, rates of hospitalization, and relevant comorbid conditions. SARS-CoV-2 was detected in small intestinal epithelial cells by immunofluorescence staining or electron microscopy in 15 of 17 patients studied. High-dimensional analyses of GI tissues showed low levels of inflammation, including down-regulation of key inflammatory genes including IFNG, CXCL8, CXCL2, and IL1B and reduced frequencies of proinflammatory dendritic cells compared with control individuals. Consistent with these findings, we found a significant reduction in disease severity and mortality in patients presenting with GI symptoms that was independent of sex, age, and comorbid illnesses and despite similar nasopharyngeal SARS-CoV-2 viral loads. Furthermore, there was reduced levels of key inflammatory proteins in circulation in patients with GI symptoms. CONCLUSIONS: These data highlight the absence of a proinflammatory response in the GI tract despite detection of SARS-CoV-2. In parallel, reduced mortality in patients with COVID-19 presenting with GI symptoms was observed. A potential role of the GI tract in attenuating SARS-CoV-2-associated inflammation needs to be further examined.
Assuntos
COVID-19/virologia , Gastroenteropatias/virologia , Imunidade nas Mucosas , Mucosa Intestinal/virologia , SARS-CoV-2/patogenicidade , Idoso , Idoso de 80 Anos ou mais , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/mortalidade , Estudos de Casos e Controles , Células Cultivadas , Citocinas/sangue , Feminino , Gastroenteropatias/diagnóstico , Gastroenteropatias/imunologia , Gastroenteropatias/mortalidade , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/sangue , Mucosa Intestinal/imunologia , Itália , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Prognóstico , Medição de Risco , Fatores de Risco , SARS-CoV-2/imunologia , Carga ViralRESUMO
Sepsis is a series of clinical syndromes caused by the immunological response to infection. The clinical evidence for sepsis could typically attribute to bacterial infection or bacterial endotoxins, but infections due to viruses, fungi or parasites could also lead to sepsis. Regardless of the etiology, rapid clinical deterioration, prolonged stay in intensive care units and high risk for mortality correlate with the incidence of sepsis. Despite its prevalence and morbidity, improvement in sepsis outcomes has remained limited. In this comprehensive review, we summarize the current landscape of risk estimation, diagnosis, treatment and prognosis strategies in the setting of sepsis and discuss future challenges. We argue that the advent of modern technologies such as in-depth molecular profiling, biomedical big data and machine intelligence methods will augment the treatment and prevention of sepsis. The volume, variety, veracity and velocity of heterogeneous data generated as part of healthcare delivery and recent advances in biotechnology-driven therapeutics and companion diagnostics may provide a new wave of approaches to identify the most at-risk sepsis patients and reduce the symptom burden in patients within shorter turnaround times. Developing novel therapies by leveraging modern drug discovery strategies including computational drug repositioning, cell and gene-therapy, clustered regularly interspaced short palindromic repeats -based genetic editing systems, immunotherapy, microbiome restoration, nanomaterial-based therapy and phage therapy may help to develop treatments to target sepsis. We also provide empirical evidence for potential new sepsis targets including FER and STARD3NL. Implementing data-driven methods that use real-time collection and analysis of clinical variables to trace, track and treat sepsis-related adverse outcomes will be key. Understanding the root and route of sepsis and its comorbid conditions that complicate treatment outcomes and lead to organ dysfunction may help to facilitate identification of most at-risk patients and prevent further deterioration. To conclude, leveraging the advances in precision medicine, biomedical data science and translational bioinformatics approaches may help to develop better strategies to diagnose and treat sepsis in the next decade.
Assuntos
Medicina de Precisão , Sepse/diagnóstico , Sepse/terapia , Humanos , Prognóstico , Fatores de Risco , Sepse/patologiaRESUMO
BACKGROUND: Research regarding the association between severe obesity and in-hospital mortality is inconsistent. We evaluated the impact of body mass index (BMI) levels on mortality in the medical wards. The analysis was performed separately before and during the COVID-19 pandemic. METHODS: We retrospectively retrieved data of adult patients admitted to the medical wards at the Mount Sinai Health System in New York City. The study was conducted between January 1, 2011, to March 23, 2021. Patients were divided into two sub-cohorts: pre-COVID-19 and during-COVID-19. Patients were then clustered into groups based on BMI ranges. A multivariate logistic regression analysis compared the mortality rate among the BMI groups, before and during the pandemic. RESULTS: Overall, 179,288 patients were admitted to the medical wards and had a recorded BMI measurement. 149,098 were admitted before the COVID-19 pandemic and 30,190 during the pandemic. Pre-pandemic, multivariate analysis showed a "J curve" between BMI and mortality. Severe obesity (BMI > 40) had an aOR of 0.8 (95% CI:0.7-1.0, p = 0.018) compared to the normal BMI group. In contrast, during the pandemic, the analysis showed a "U curve" between BMI and mortality. Severe obesity had an aOR of 1.7 (95% CI:1.3-2.4, p < 0.001) compared to the normal BMI group. CONCLUSIONS: Medical ward patients with severe obesity have a lower risk for mortality compared to patients with normal BMI. However, this does not apply during COVID-19, where obesity was a leading risk factor for mortality in the medical wards. It is important for the internal medicine physician to understand the intricacies of the association between obesity and medical ward mortality.
Assuntos
Índice de Massa Corporal , COVID-19/mortalidade , Mortalidade Hospitalar/tendências , Hospitalização/estatística & dados numéricos , Obesidade/fisiopatologia , SARS-CoV-2/isolamento & purificação , Idoso , COVID-19/epidemiologia , COVID-19/patologia , COVID-19/virologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Taxa de SobrevidaRESUMO
BACKGROUND: Early reports indicate that AKI is common among patients with coronavirus disease 2019 (COVID-19) and associated with worse outcomes. However, AKI among hospitalized patients with COVID-19 in the United States is not well described. METHODS: This retrospective, observational study involved a review of data from electronic health records of patients aged ≥18 years with laboratory-confirmed COVID-19 admitted to the Mount Sinai Health System from February 27 to May 30, 2020. We describe the frequency of AKI and dialysis requirement, AKI recovery, and adjusted odds ratios (aORs) with mortality. RESULTS: Of 3993 hospitalized patients with COVID-19, AKI occurred in 1835 (46%) patients; 347 (19%) of the patients with AKI required dialysis. The proportions with stages 1, 2, or 3 AKI were 39%, 19%, and 42%, respectively. A total of 976 (24%) patients were admitted to intensive care, and 745 (76%) experienced AKI. Of the 435 patients with AKI and urine studies, 84% had proteinuria, 81% had hematuria, and 60% had leukocyturia. Independent predictors of severe AKI were CKD, men, and higher serum potassium at admission. In-hospital mortality was 50% among patients with AKI versus 8% among those without AKI (aOR, 9.2; 95% confidence interval, 7.5 to 11.3). Of survivors with AKI who were discharged, 35% had not recovered to baseline kidney function by the time of discharge. An additional 28 of 77 (36%) patients who had not recovered kidney function at discharge did so on posthospital follow-up. CONCLUSIONS: AKI is common among patients hospitalized with COVID-19 and is associated with high mortality. Of all patients with AKI, only 30% survived with recovery of kidney function by the time of discharge.
Assuntos
Injúria Renal Aguda/etiologia , COVID-19/complicações , SARS-CoV-2 , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/terapia , Injúria Renal Aguda/urina , Idoso , Idoso de 80 Anos ou mais , COVID-19/mortalidade , Feminino , Hematúria/etiologia , Mortalidade Hospitalar , Hospitais Privados/estatística & dados numéricos , Hospitais Urbanos/estatística & dados numéricos , Humanos , Incidência , Pacientes Internados , Leucócitos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Proteinúria/etiologia , Diálise Renal , Estudos Retrospectivos , Resultado do Tratamento , Urina/citologiaRESUMO
Causal genes and variants within genome-wide association study (GWAS) loci can be identified by integrating GWAS statistics with expression quantitative trait loci (eQTL) and determining which variants underlie both GWAS and eQTL signals. Most analyses, however, consider only the marginal eQTL signal, rather than dissect this signal into multiple conditionally independent signals for each gene. Here we show that analyzing conditional eQTL signatures, which could be important under specific cellular or temporal contexts, leads to improved fine mapping of GWAS associations. Using genotypes and gene expression levels from post-mortem human brain samples (n = 467) reported by the CommonMind Consortium (CMC), we find that conditional eQTL are widespread; 63% of genes with primary eQTL also have conditional eQTL. In addition, genomic features associated with conditional eQTL are consistent with context-specific (e.g., tissue-, cell type-, or developmental time point-specific) regulation of gene expression. Integrating the 2014 Psychiatric Genomics Consortium schizophrenia (SCZ) GWAS and CMC primary and conditional eQTL data reveals 40 loci with strong evidence for co-localization (posterior probability > 0.8), including six loci with co-localization of conditional eQTL. Our co-localization analyses support previously reported genes, identify novel genes associated with schizophrenia risk, and provide specific hypotheses for their functional follow-up.
Assuntos
Estudo de Associação Genômica Ampla , Córtex Pré-Frontal/patologia , Locos de Características Quantitativas/genética , Esquizofrenia/genética , Células Cultivadas , Epigênese Genética , Genoma Humano , HumanosRESUMO
PURPOSE: Limited mechanical ventilators (MV) during the Coronavirus disease (COVID-19) pandemic have led to the use of non-invasive ventilation (NIV) in hypoxemic patients, which has not been studied well. We aimed to assess the association of NIV versus MV with mortality and morbidity during respiratory intervention among hypoxemic patients admitted with COVID-19. METHODS: We performed a retrospective multi-center cohort study across 5 hospitals during March-April 2020. Outcomes included mortality, severe COVID-19-related symptoms, time to discharge, and final oxygen saturation (SpO2) at the conclusion of the respiratory intervention. Multivariable regression of outcomes was conducted in all hypoxemic participants, 4 subgroups, and propensity-matched analysis. RESULTS: Of 2381 participants with laboratory-confirmed SARS-CoV-2, 688 were included in the study who were hypoxemic upon initiation of respiratory intervention. During the study period, 299 participants died (43%), 163 were admitted to the ICU (24%), and 121 experienced severe COVID-19-related symptoms (18%). Participants on MV had increased mortality than those on NIV (128/154 [83%] versus 171/534 [32%], OR = 30, 95% CI 16-60) with a mean survival of 6 versus 15 days, respectively. The MV group experienced more severe COVID-19-related symptoms [55/154 (36%) versus 66/534 (12%), OR = 4.3, 95% CI 2.7-6.8], longer time to discharge (mean 17 versus 7.1 days), and lower final SpO2 (92 versus 94%). Across all subgroups and propensity-matched analysis, MV was associated with a greater OR of death than NIV. CONCLUSIONS: NIV was associated with lower respiratory intervention mortality and morbidity than MV. However, findings may be liable to unmeasured confounding and further study from randomized controlled trials is needed to definitively determine the role of NIV in hypoxemic patients with COVID-19.
Assuntos
COVID-19 , Ventilação não Invasiva , Estudos de Coortes , Humanos , Respiração Artificial , Estudos Retrospectivos , SARS-CoV-2RESUMO
In the recent decade, deep learning, a subset of artificial intelligence and machine learning, has been used to identify patterns in big healthcare datasets for disease phenotyping, event predictions, and complex decision making. Public datasets for electrocardiograms (ECGs) have existed since the 1980s and have been used for very specific tasks in cardiology, such as arrhythmia, ischemia, and cardiomyopathy detection. Recently, private institutions have begun curating large ECG databases that are orders of magnitude larger than the public databases for ingestion by deep learning models. These efforts have demonstrated not only improved performance and generalizability in these aforementioned tasks but also application to novel clinical scenarios. This review focuses on orienting the clinician towards fundamental tenets of deep learning, state-of-the-art prior to its use for ECG analysis, and current applications of deep learning on ECGs, as well as their limitations and future areas of improvement.
Assuntos
Cardiologia , Aprendizado Profundo , Inteligência Artificial , Eletrocardiografia , Humanos , Aprendizado de MáquinaRESUMO
BACKGROUND/AIMS: Acute kidney injury (AKI) in critically ill patients is common, and continuous renal replacement therapy (CRRT) is a preferred mode of renal replacement therapy (RRT) in hemodynamically unstable patients. Prediction of clinical outcomes in patients on CRRT is challenging. We utilized several approaches to predict RRT-free survival (RRTFS) in critically ill patients with AKI requiring CRRT. METHODS: We used the Medical Information Mart for Intensive Care (MIMIC-III) database to identify patients ≥18 years old with AKI on CRRT, after excluding patients who had ESRD on chronic dialysis, and kidney transplantation. We defined RRTFS as patients who were discharged alive and did not require RRT ≥7 days prior to hospital discharge. We utilized all available biomedical data up to CRRT initiation. We evaluated 7 approaches, including logistic regression (LR), random forest (RF), support vector machine (SVM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), multilayer perceptron (MLP), and MLP with long short-term memory (MLP + LSTM). We evaluated model performance by using area under the receiver operating characteristic (AUROC) curves. RESULTS: Out of 684 patients with AKI on CRRT, 205 (30%) patients had RRTFS. The median age of patients was 63 years and their median Simplified Acute Physiology Score (SAPS) II was 67 (interquartile range 52-84). The MLP + LSTM showed the highest AUROC (95% CI) of 0.70 (0.67-0.73), followed by MLP 0.59 (0.54-0.64), LR 0.57 (0.52-0.62), SVM 0.51 (0.46-0.56), AdaBoost 0.51 (0.46-0.55), RF 0.44 (0.39-0.48), and XGBoost 0.43 (CI 0.38-0.47). CONCLUSIONS: A MLP + LSTM model outperformed other approaches for predicting RRTFS. Performance could be further improved by incorporating other data types.
Assuntos
Injúria Renal Aguda/terapia , Terapia de Substituição Renal , Injúria Renal Aguda/diagnóstico , Fatores Etários , Idoso , Cuidados Críticos , Feminino , Humanos , Modelos Logísticos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , PrognósticoRESUMO
BACKGROUND AND AIM: New York City (NYC) is an epicenter of the COVID-19 pandemic in the United States. Proper triage of patients with possible COVID-19 via chief complaint is critical but not fully optimized. This study aimed to investigate the association between presentation by chief complaints and COVID-19 status. METHODS: We retrospectively analyzed adult emergency department (ED) patient visits from five different NYC hospital campuses from March 1, 2020 to May 13, 2020 of patients who underwent nasopharyngeal COVID-19 RT-PCR testing. The positive and negative COVID-19 cohorts were then assessed for different chief complaints obtained from structured triage data. Sub-analysis was performed for patients older than 65 and within chief complaints with high mortality. RESULTS: Of 11,992 ED patient visits who received COVID-19 testing, 6524/11992 (54.4%) were COVID-19 positive. 73.5% of fever, 67.7% of shortness of breath, and 65% of cough had COVID-19, but others included 57.5% of weakness/fall/altered mental status, 55.5% of glycemic control, and 51.4% of gastrointestinal symptoms. In patients over 65, 76.7% of diarrhea, 73.7% of fatigue, and 69.3% of weakness had COVID-19. 45.5% of dehydration, 40.5% of altered mental status, 27% of fall, and 24.6% of hyperglycemia patients experienced mortality. CONCLUSION: A novel high risk COVID-19 patient population was identified from chief complaint data, which is different from current suggested CDC guidelines, and may help triage systems to better isolate COVID-19 patients. Older patients with COVID-19 infection presented with more atypical complaints warranting special consideration. COVID-19 was associated with higher mortality in a unique group of complaints also warranting special consideration.
Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Serviço Hospitalar de Emergência/estatística & dados numéricos , Pandemias , Triagem/métodos , Adulto , Idoso , COVID-19/epidemiologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Estudos RetrospectivosRESUMO
BACKGROUND: Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its clinical identification. OBJECTIVE: We performed an evaluation of HRV collected by a wearable device to identify and predict COVID-19 and its related symptoms. METHODS: Health care workers in the Mount Sinai Health System were prospectively followed in an ongoing observational study using the custom Warrior Watch Study app, which was downloaded to their smartphones. Participants wore an Apple Watch for the duration of the study, measuring HRV throughout the follow-up period. Surveys assessing infection and symptom-related questions were obtained daily. RESULTS: Using a mixed-effect cosinor model, the mean amplitude of the circadian pattern of the standard deviation of the interbeat interval of normal sinus beats (SDNN), an HRV metric, differed between subjects with and without COVID-19 (P=.006). The mean amplitude of this circadian pattern differed between individuals during the 7 days before and the 7 days after a COVID-19 diagnosis compared to this metric during uninfected time periods (P=.01). Significant changes in the mean and amplitude of the circadian pattern of the SDNN was observed between the first day of reporting a COVID-19-related symptom compared to all other symptom-free days (P=.01). CONCLUSIONS: Longitudinally collected HRV metrics from a commonly worn commercial wearable device (Apple Watch) can predict the diagnosis of COVID-19 and identify COVID-19-related symptoms. Prior to the diagnosis of COVID-19 by nasal swab polymerase chain reaction testing, significant changes in HRV were observed, demonstrating the predictive ability of this metric to identify COVID-19 infection.