Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
CA Cancer J Clin ; 72(1): 34-56, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792808

RESUMO

Radiation therapy (RT) continues to play an important role in the treatment of cancer. Adaptive RT (ART) is a novel method through which RT treatments are evolving. With the ART approach, computed tomography or magnetic resonance (MR) images are obtained as part of the treatment delivery process. This enables the adaptation of the irradiated volume to account for changes in organ and/or tumor position, movement, size, or shape that may occur over the course of treatment. The advantages and challenges of ART maybe somewhat abstract to oncologists and clinicians outside of the specialty of radiation oncology. ART is positioned to affect many different types of cancer. There is a wide spectrum of hypothesized benefits, from small toxicity improvements to meaningful gains in overall survival. The use and application of this novel technology should be understood by the oncologic community at large, such that it can be appropriately contextualized within the landscape of cancer therapies. Likewise, the need to test these advances is pressing. MR-guided ART (MRgART) is an emerging, extended modality of ART that expands upon and further advances the capabilities of ART. MRgART presents unique opportunities to iteratively improve adaptive image guidance. However, although the MRgART adaptive process advances ART to previously unattained levels, it can be more expensive, time-consuming, and complex. In this review, the authors present an overview for clinicians describing the process of ART and specifically MRgART.


Assuntos
Imagem por Ressonância Magnética Intervencionista/métodos , Neoplasias/radioterapia , Aceleradores de Partículas , Radioterapia (Especialidade)/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , História do Século XX , História do Século XXI , Humanos , Imagem por Ressonância Magnética Intervencionista/história , Imagem por Ressonância Magnética Intervencionista/instrumentação , Imagem por Ressonância Magnética Intervencionista/tendências , Neoplasias/diagnóstico por imagem , Radioterapia (Especialidade)/história , Radioterapia (Especialidade)/instrumentação , Radioterapia (Especialidade)/tendências , Planejamento da Radioterapia Assistida por Computador/história , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/tendências
2.
Magn Reson Med ; 92(3): 1115-1127, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38730562

RESUMO

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.


Assuntos
Encéfalo , Crowdsourcing , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Mapeamento Encefálico/métodos , Masculino , Feminino , Adulto , Algoritmos
3.
J Appl Clin Med Phys ; 25(1): e14229, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032123

RESUMO

BACKGROUND: Pulsed reduced dose rate (PRDR) is an emerging radiotherapy technique for recurrent diseases. It is pertinent that the linac beam characteristics are evaluated for PRDR dose rates and a suitable dosimeter is employed for IMRT QA. PURPOSE: This study sought to investigate the pulse characteristics of a 6 MV photon beam during PRDR irradiations on a commercial linac. The feasibility of using EBT3 radiochromic film for use in IMRT QA was also investigated by comparing its response to a commercial diode array phantom. METHODS: A plastic scintillator detector was employed to measure the photon pulse characteristics across nominal repetition rates (NRRs) in the 5-600 MU/min range. Film was irradiated with dose rates in the 0.033-4 Gy/min range to study the dose rate dependence. Five clinical PRDR treatment plans were selected for IMRT QA with the Delta4 phantom and EBT3 film sheets. The planned and measured dose were compared using gamma analysis with a criterion of 3%/3 mm. EBT3 film QA was performed using a cumulative technique and a weighting factor technique. RESULTS: Negligible differences were observed in the pulse width and height data between the investigated NRRs. The pulse width was measured to be 3.15 ± 0.01 µ s $\mu s$ and the PRF was calculated to be 3-357 Hz for the 5-600 MU/min NRRs. The EBT3 film was found to be dose rate independent within 3%. The gamma pass rates (GPRs) were above 99% and 90% for the Delta4 phantom and the EBT3 film using the cumulative QA method, respectively. GPRs as low as 80% were noted for the weighting factor EBT3 QA method. CONCLUSIONS: Altering the NRRs changes the mean dose rate while the instantaneous dose rate remains constant. The EBT3 film was found to be suitable for PRDR dosimetry and IMRT QA with minimal dose rate dependence.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Dosimetria Fotográfica/métodos , Radiometria , Raios gama , Fótons
4.
Magn Reson Med ; 88(2): 840-848, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35403235

RESUMO

PURPOSE: To reduce scan time, methods to accelerate phase-encoded/non-Cartesian MR fingerprinting (MRF) acquisitions for variable density spiral acquisitions have recently been developed. These methods are not applicable to MRF acquisitions, wherein a single k-space spoke is acquired per frame. Therefore, we propose a low-rank inversion method to resolve MRF contrast dynamics from through-plane accelerated Cartesian/radial measurements applied to quantitative relaxation-time mapping on a 0.35T system. METHODS: An algorithm was implemented to reconstruct through-plane aliased low-rank images describing the contrast dynamics occurring because of the transient-state MRF acquisition. T1 and T2 times from accelerated acquisitions were compared with those from unaccelerated linear reconstructions in a standardized system phantom and within in vivo brain and prostate experiments on a hybrid 0.35T MRI/linear accelerator. RESULTS: No significant differences between T1 and T2 times for the accelerated reconstructions were observed compared to fully sampled acquisitions (p = 0.41 and p = 0.36, respectively). The mean absolute errors in T1 and T2 were 5.6% and 2.9%, respectively, between the full and accelerated acquisitions. The SDs in T1 and T2 decreased with the advanced accelerated reconstruction compared with the unaccelerated reconstruction (p = 0.02 and p = 0.03, respectively). The quality of the T1 and T2 maps generated with the proposed approach are comparable to those obtained using the unaccelerated data sets. CONCLUSIONS: Through-plane accelerated MRF with radial k-space coverage was demonstrated at a low field strength of 0.35 T. This method enabled 3D T1 and T2 mapping at 0.35 T with a 3-min scan.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Imagens de Fantasmas
5.
J Appl Clin Med Phys ; 22(1): 308-317, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33410568

RESUMO

PURPOSE: To evaluate the dosimetric and image-guided radiation therapy (IGRT) performance of a novel generative adversarial network (GAN) generated synthetic CT (synCT) in the brain and compare its performance for clinical use including conventional brain radiotherapy, cranial stereotactic radiosurgery (SRS), planar, and volumetric IGRT. METHODS AND MATERIALS: SynCT images for 12 brain cancer patients (6 SRS, 6 conventional) were generated from T1-weighted postgadolinium magnetic resonance (MR) images by applying a GAN model with a residual network (ResNet) generator and a convolutional neural network (CNN) with 5 convolutional layers as the discriminator that classified input images as real or synthetic. Following rigid registration, clinical structures and treatment plans derived from simulation CT (simCT) images were transferred to synCTs. Dose was recalculated for 15 simCT/synCT plan pairs using fixed monitor units. Two-dimensional (2D) gamma analysis (2%/2 mm, 1%/1 mm) was performed to compare dose distributions at isocenter. Dose-volume histogram (DVH) metrics (D95% , D99% , D0.2cc, and D0.035cc ) were assessed for the targets and organ at risks (OARs). IGRT performance was evaluated via volumetric registration between cone beam CT (CBCT) to synCT/simCT and planar registration between KV images to synCT/simCT digital reconstructed radiographs (DRRs). RESULTS: Average gamma passing rates at 1%/1mm and 2%/2mm were 99.0 ± 1.5% and 99.9 ± 0.2%, respectively. Excellent agreement in DVH metrics was observed (mean difference ≤0.10 ± 0.04 Gy for targets, 0.13 ± 0.04 Gy for OARs). The population averaged mean difference in CBCT-synCT registrations were <0.2 mm and 0.1 degree different from simCT-based registrations. The mean difference between kV-synCT DRR and kV-simCT DRR registrations was <0.5 mm with no statistically significant differences observed (P > 0.05). An outlier with a large resection cavity exhibited the worst-case scenario. CONCLUSION: Brain GAN synCTs demonstrated excellent performance for dosimetric and IGRT endpoints, offering potential use in high precision brain cancer therapy.


Assuntos
Aprendizado Profundo , Radioterapia Guiada por Imagem , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
6.
J Appl Clin Med Phys ; 21(11): 195-204, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33073454

RESUMO

PURPOSE: Rising evidence suggests that cardiac substructures are highly radiosensitive. However, they are not routinely considered in treatment planning as they are not readily visualized on treatment planning CTs (TPCTs). This work integrated the soft tissue contrast provided by low-field MRIs acquired on an MR-linac via image registration to further enable cardiac substructure sparing on TPCTs. METHODS: Sixteen upper thoracic patients treated at various breathing states (7 end-exhalation, 7 end-inhalation, 2 free-breathing) on a 0.35T MR-linac were retrospectively evaluated. A hybrid MR/CT atlas and a deep learning three-dimensional (3D) U-Net propagated 13 substructures to TPCTs. Radiation oncologists revised contours using registered MRIs. Clinical treatment plans were re-optimized and evaluated for beam arrangement modifications to reduce substructure doses. Dosimetric assessment included mean and maximum (0.03cc) dose, left ventricular volume receiving 5Gy (LV-V5), and other clinical endpoints. As metrics of plan complexity, total MU and treatment time were evaluated between approaches. RESULTS: Cardiac sparing plans reduced the mean heart dose (mean reduction 0.7 ± 0.6, range 0.1 to 2.5 Gy). Re-optimized plans reduced left anterior descending artery (LADA) mean and LADA0.03cc (0.0-63.9% and 0.0 to 17.3 Gy, respectively). LV0.03cc was reduced by >1.5 Gy for 10 patients while 6 cases had large reductions (>7%) in LV-V5. Left atrial mean dose was equivalent/reduced in all sparing plans (mean reduction 0.9 ± 1.2 Gy). The left main coronary artery was better spared in all cases for mean dose and D0.03cc . One patient exhibited >10 Gy reduction in D0.03cc to four substructures. There was no statistical difference in treatment time and MU, or clinical endpoints to the planning target volume, lung, esophagus, or spinal cord after re-optimization. Four patients benefited from new beam arrangements, leading to further dose reductions. CONCLUSIONS: By introducing 0.35T MRIs acquired on an MR-linac to verify cardiac substructure segmentations for CT-based treatment planning, an opportunity was presented for more effective sparing with limited increase in plan complexity. Validation in a larger cohort with appropriate margins offers potential to reduce radiation-related cardiotoxicities.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Coração/diagnóstico por imagem , Humanos , Órgãos em Risco , Dosagem Radioterapêutica , Estudos Retrospectivos
7.
J Appl Clin Med Phys ; 20(1): 265-275, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30411477

RESUMO

MR-only treatment planning and MR-IGRT leverage MRI's powerful soft tissue contrast for high-precision radiation therapy. However, anthropomorphic MR-compatible phantoms are currently limited. This work describes the development and evaluation of a custom-designed, modular, pelvic end-to-end (PETE) MR-compatible phantom to benchmark MR-only and MR-IGRT workflows. For construction considerations, subject data were assessed for phantom/skeletal geometry and internal organ kinematics to simulate average male pelvis anatomy. Various materials for the bone, bladder, and rectum were evaluated for utility within the phantom. Once constructed, PETE underwent CT-SIM, MR-Linac, and MR-SIM imaging to qualitatively assess organ visibility. Scans were acquired with various bladder and rectal volumes to assess component interactions, filling capabilities, and filling reproducibility via volume and centroid differences. PETE simulates average male pelvis anatomy and comprises an acrylic body oval (height/width = 23.0/38.1 cm) and a cast-mold urethane skeleton, with silicone balloons simulating bladder and rectum, a silicone sponge prostate, and hydrophilic poly(vinyl alcohol) foam to simulate fat/tissue separation between organs. Access ports enable retrofitting the phantom with other inserts including point/film-based dosimetry options. Acceptable contrast was achievable in CT-SIM and MR-Linac images. However, the bladder was challenging to distinguish from background in CT-SIM. The desired contrast for T1-weighted and T2-weighted MR-SIM (dark and bright bladders, respectively) was achieved. Rectum and bone exhibited no MR signal. Inputted volumes differed by <5 and <10 mL from delineated rectum (CT-SIM) and bladder (MR-SIM) volumes. Increasing bladder and rectal volumes induced organ displacements and shape variations. Reproduced volumes differed by <4.5 mL, with centroid displacements <1.4 mm. A point dose measurement with an MR-compatible ion chamber in an MR-Linac was within 1.5% of expected. A novel, modular phantom was developed with suitable materials and properties that accurately and reproducibly simulate status changes with multiple dosimetry options. Future work includes integrating more realistic organ models to further expand phantom options.


Assuntos
Imageamento por Ressonância Magnética/métodos , Pelve/efeitos da radiação , Imagens de Fantasmas , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Masculino , Órgãos em Risco/efeitos da radiação , Aceleradores de Partículas , Pelve/patologia , Neoplasias da Próstata/patologia , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
8.
J Appl Clin Med Phys ; 20(4): 10-17, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30821881

RESUMO

PURPOSE: With the move towards magnetic resonance imaging (MRI) as a primary treatment planning modality option for men with prostate cancer, it becomes critical to quantify the potential uncertainties introduced for MR-only planning. This work characterized geometric and dosimetric intra-fractional changes between the prostate, seminal vesicles (SVs), and organs at risk (OARs) in response to bladder filling conditions. MATERIALS AND METHODS: T2-weighted and mDixon sequences (3-4 time points/subject, at 1, 1.5 and 3.0 T with totally 34 evaluable time points) were acquired in nine subjects using a fixed bladder filling protocol (bladder void, 20 oz water consumed pre-imaging, 10 oz mid-session). Using mDixon images, Magnetic Resonance for Calculating Attenuation (MR-CAT) synthetic computed tomography (CT) images were generated by classifying voxels as muscle, adipose, spongy, and compact bone and by assignment of bulk Hounsfield Unit values. Organs including the prostate, SVs, bladder, and rectum were delineated on the T2 images at each time point by one physician. The displacement of the prostate and SVs was assessed based on the shift of the center of mass of the delineated organs from the reference state (fullest bladder). Changes in dose plans at different bladder states were assessed based on volumetric modulated arc radiotherapy (VMAT) plans generated for the reference state. RESULTS: Bladder volume reduction of 70 ± 14% from the final to initial time point (relative to the final volume) was observed in the subject population. In the empty bladder condition, the dose delivered to 95% of the planning target volume (PTV) (D95%) reduced significantly for all cases (11.53 ± 6.00%) likely due to anterior shifts of prostate/SVs relative to full bladder conditions. D15% to the bladder increased consistently in all subjects (42.27 ± 40.52%). Changes in D15% to the rectum were patient-specific, ranging from -23.93% to 22.28% (-0.76 ± 15.30%). CONCLUSIONS: Variations in the bladder and rectal volume can significantly dislocate the prostate and OARs, which can negatively impact the dose delivered to these organs. This warrants proper preparation of patients during treatment and imaging sessions, especially when imaging required longer scan times such as MR protocols.


Assuntos
Imageamento por Ressonância Magnética/métodos , Órgãos em Risco/efeitos da radiação , Próstata/anatomia & histologia , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Adulto , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Prognóstico , Próstata/efeitos da radiação , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
9.
J Appl Clin Med Phys ; 20(9): 95-103, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31538718

RESUMO

Model-based iterative reconstruction (MBIR) reduces CT imaging dose while maintaining image quality. However, MBIR reduces noise while preserving edges which may impact intensity-based tasks such as auto-segmentation. This work evaluates the sensitivity of an auto-contouring prostate atlas across multiple MBIR reconstruction protocols and benchmarks the results against filtered back projection (FBP). Images were created from raw projection data for 11 prostate cancer cases using FBP and nine different MBIR reconstructions (3 protocols/3 noise reduction levels) yielding 10 reconstructions/patient. Five bony structures, bladder, rectum, prostate, and seminal vesicles (SVs) were segmented using an auto-segmentation pipeline that renders 3D binary masks for analysis. Performance was evaluated for volume percent difference (VPD) and Dice similarity coefficient (DSC), using FBP as the gold standard. Nonparametric Friedman tests plus post hoc all pairwise comparisons were employed to test for significant differences (P < 0.05) for soft tissue organs and protocol/level combinations. A physician performed qualitative grading of 396 MBIR contours across the prostate, bladder, SVs, and rectum in comparison to FBP using a six-point scale. MBIR contours agreed with FBP for bony anatomy (DSC ≥ 0.98), bladder (DSC ≥ 0.94, VPD < 8.5%), and prostate (DSC = 0.94 ± 0.03, VPD = 4.50 ± 4.77% (range: 0.07-26.39%). Increased variability was observed for rectum (VPD = 7.50 ± 7.56% and DSC = 0.90 ± 0.08) and SVs (VPD and DSC of 8.23 ± 9.86% range (0.00-35.80%) and 0.87 ± 0.11, respectively). Over the all protocol/level comparisons, a significant difference was observed for the prostate VPD between BSPL1 and BSTL2 (adjusted P-value = 0.039). Nevertheless, 300 of 396 (75.8%) of the four soft tissue structures using MBIR were graded as equivalent or better than FBP, suggesting that MBIR offered potential improvements in auto-segmentation performance when compared to FBP. Future work may involve tuning organ-specific MBIR parameters to further improve auto-segmentation performance. Running title: Impact of CT Reconstruction Algorithm on Auto-segmentation Performance.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Masculino , Prognóstico , Dosagem Radioterapêutica , Estudos Retrospectivos
10.
Radiology ; 308(1): e231098, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37404147
11.
Sleep Breath ; 22(2): 463-479, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29101633

RESUMO

BACKGROUND: Human snores are caused by vibrating anatomical structures in the upper airway. The glottis is a highly variable structure and a critical organ regulating inhaled flows. However, the effects of the glottis motion on airflow and breathing sound are not well understood, while static glottises have been implemented in most previous in silico studies. The objective of this study is to develop a computational acoustic model of human airways with a dynamic glottis and quantify the effects of glottis motion and tidal breathing on airflow and sound generation. METHODS: Large eddy simulation and FW-H models were adopted to compute airflows and respiratory sounds in an image-based mouth-lung model. User-defined functions were developed that governed the glottis kinematics. Varying breathing scenarios (static vs. dynamic glottis; constant vs. sinusoidal inhalations) were simulated to understand the effects of glottis motion and inhalation pattern on sound generation. Pressure distributions were measured in airway casts with different glottal openings for model validation purpose. RESULTS: Significant flow fluctuations were predicted in the upper airways at peak inhalation rates or during glottal constriction. The inhalation speed through the glottis was the predominating factor in the sound generation while the transient effects were less important. For all frequencies considered (20-2500 Hz), the static glottis substantially underestimated the intensity of the generated sounds, which was most pronounced in the range of 100-500 Hz. Adopting an equivalent steady flow rather than a tidal breathing further underestimated the sound intensity. An increase of 25 dB in average was observed for the life condition (sine-dynamic) compared to the idealized condition (constant-rigid) for the broadband frequencies, with the largest increase of approximately 40 dB at the frequency around 250 Hz. CONCLUSION: Results show that a severely narrowing glottis during inhalation, as well as flow fluctuations in the downstream trachea, can generate audible sound levels.


Assuntos
Glote/fisiologia , Modelos Biológicos , Respiração , Sons Respiratórios/fisiologia , Acústica , Adulto , Cadáver , Simulação por Computador , Humanos , Masculino , Ronco
12.
J Appl Clin Med Phys ; 19(6): 217-225, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30207053

RESUMO

PURPOSE: This work characterizes a novel exponential 4DCT reconstruction algorithm (EXPO), in phantom and patient, to determine its impact on image quality as compared to the standard cosine-squared weighted 4DCT reconstruction. METHODS: A motion platform translated objects in the superior-inferior (S-I) direction at varied breathing rates (8-20 bpm) and couch pitches (0.06-0.1) to evaluate interplay between parameters. Ten-phase 4DCTs were acquired and data were reconstructed with cosine squared and EXPO weighting. To quantify the magnitude of image blur, objects were translated in the anterior-posterior (A-P) and S-I directions for full-width half maximum (FWHM) analysis between both 4DCT algorithms and a static case. 4DCT sinogram data for 10 patients were retrospectively reconstructed using both weighting factors. Image subtractions elucidated intensity and boundary differences. Subjective image quality grading (presence of image artifacts, noise, spatial resolution (i.e., lung/liver boundary sharpness), and overall image quality) was conducted yielding 200 evaluations. RESULTS: After taking static object size into account, the FWHM of EXPO reconstructions in the A-P direction was 3.3 ± 1.7 mm (range: 0-4.9) as compared to cosine squared 9.8 ± 4.0 mm (range: 2.6-14.4). The FWHM of objects translated in the S-I direction reconstructed with EXPO agreed better with the static FWHM than the cosine-squared reconstructions. Slower breathing periods, faster couch pitches, and intermediate 4DCT phases had the largest reductions of blurring with EXPO. 18 of 60 comparisons of artifacts were improved with EXPO reconstruction, whereas no appreciable changes were observed in image quality scores. In 18 of 20 cases, EXPO provided sharper images although the reduced projections also increased baseline noise. CONCLUSION: Exponential weighted 4DCT offers potential for reducing image blur (i.e., improving image sharpness) in 4DCT with a tendency to reduce artifacts. Future work will involve evaluating the impact on treatment planning including delineation ability and dose calculation.


Assuntos
Neoplasias Abdominais/radioterapia , Neoplasias da Mama/radioterapia , Tomografia Computadorizada Quadridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/radioterapia , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Abdominais/diagnóstico por imagem , Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Movimento , Órgãos em Risco/efeitos da radiação , Prognóstico , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Respiração , Estudos Retrospectivos
13.
J Appl Clin Med Phys ; 18(4): 51-61, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28497476

RESUMO

PURPOSE: MR-only treatment planning requires images of high geometric fidelity, particularly for large fields of view (FOV). However, the availability of large FOV distortion phantoms with analysis software is currently limited. This work sought to optimize a modular distortion phantom to accommodate multiple bore configurations and implement distortion characterization in a widely implementable solution. METHOD AND MATERIALS: To determine candidate materials, 1.0 T MR and CT images were acquired of twelve urethane foam samples of various densities and strengths. Samples were precision-machined to accommodate 6 mm diameter paintballs used as landmarks. Final material candidates were selected by balancing strength, machinability, weight, and cost. Bore sizes and minimum aperture width resulting from couch position were tabulated from the literature (14 systems, 5 vendors). Bore geometry and couch position were simulated using MATLAB to generate machine-specific models to optimize the phantom build. Previously developed software for distortion characterization was modified for several magnet geometries (1.0 T, 1.5 T, 3.0 T), compared against previously published 1.0 T results, and integrated into the 3D Slicer application platform. RESULTS: All foam samples provided sufficient MR image contrast with paintball landmarks. Urethane foam (compressive strength ∼1000 psi, density ~20 lb/ft3 ) was selected for its accurate machinability and weight characteristics. For smaller bores, a phantom version with the following parameters was used: 15 foam plates, 55 × 55 × 37.5 cm3 (L×W×H), 5,082 landmarks, and weight ~30 kg. To accommodate > 70 cm wide bores, an extended build used 20 plates spanning 55 × 55 × 50 cm3 with 7,497 landmarks and weight ~44 kg. Distortion characterization software was implemented as an external module into 3D Slicer's plugin framework and results agreed with the literature. CONCLUSION: The design and implementation of a modular, extendable distortion phantom was optimized for several bore configurations. The phantom and analysis software will be available for multi-institutional collaborations and cross-validation trials to support MR-only planning.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Software , Desenho de Equipamento , Imageamento por Ressonância Magnética/normas , Tomografia Computadorizada por Raios X
14.
J Appl Clin Med Phys ; 17(3): 128-137, 2016 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-27167270

RESUMO

Precise radiation therapy (RT) for abdominal lesions is complicated by respiratory motion and suboptimal soft tissue contrast in 4D CT. 4D MRI offers improved con-trast although long scan times and irregular breathing patterns can be limiting. To address this, visual biofeedback (VBF) was introduced into 4D MRI. Ten volunteers were consented to an IRB-approved protocol. Prospective respiratory-triggered, T2-weighted, coronal 4D MRIs were acquired on an open 1.0T MR-SIM. VBF was integrated using an MR-compatible interactive breath-hold control system. Subjects visually monitored their breathing patterns to stay within predetermined tolerances. 4D MRIs were acquired with and without VBF for 2- and 8-phase acquisitions. Normalized respiratory waveforms were evaluated for scan time, duty cycle (programmed/acquisition time), breathing period, and breathing regularity (end-inhale coefficient of variation, EI-COV). Three reviewers performed image quality assessment to compare artifacts with and without VBF. Respiration-induced liver motion was calculated via centroid difference analysis of end-exhale (EE) and EI liver contours. Incorporating VBF reduced 2-phase acquisition time (4.7 ± 1.0 and 5.4 ± 1.5 min with and without VBF, respectively) while reducing EI-COV by 43.8% ± 16.6%. For 8-phase acquisitions, VBF reduced acquisition time by 1.9 ± 1.6 min and EI-COVs by 38.8% ± 25.7% despite breathing rate remaining similar (11.1 ± 3.8 breaths/min with vs. 10.5 ± 2.9 without). Using VBF yielded higher duty cycles than unguided free breathing (34.4% ± 5.8% vs. 28.1% ± 6.6%, respectively). Image grading showed that out of 40 paired evaluations, 20 cases had equivalent and 17 had improved image quality scores with VBF, particularly for mid-exhale and EI. Increased liver excursion was observed with VBF, where superior-inferior, anterior-posterior, and left-right EE-EI displacements were 14.1± 5.8, 4.9 ± 2.1, and 1.5 ± 1.0 mm, respectively, with VBF compared to 11.9 ± 4.5, 3.7 ± 2.1, and 1.2 ± 1.4 mm without. Incorporating VBF into 4D MRI substantially reduced acquisition time, breathing irregularity, and image artifacts. However, differences in excursion were observed, thus implementation will be required throughout the RT workflow.


Assuntos
Biorretroalimentação Psicológica , Cabeça/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Percepção Visual , Adulto , Humanos , Pessoa de Meia-Idade , Movimento , Interpretação de Imagem Radiográfica Assistida por Computador , Respiração , Razão Sinal-Ruído , Adulto Jovem
15.
J Appl Clin Med Phys ; 17(5): 7-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-28297426

RESUMO

The purpose of this study was to determine the impact of magnetic resonance imaging (MRI) geometric distortions when using MRI for target delineation and planning for whole-breast, intensity-modulated radiotherapy (IMRT). Residual system distortions and combined systematic and patient-induced distortions are considered. This retrospective study investigated 18 patients who underwent whole-breast external beam radiotherapy, where both CT and MRIs were acquired for treatment planning. Distortion phantoms were imaged on two MRI systems, dedicated to radiotherapy planning (a wide, closed-bore 3T and an open-bore 1T). Patient scans were acquired on the 3T system. To simulate MRI-based planning, distortion maps representing residual system distortions were generated via deformable registration between phantom CT and MRIs. Patient CT images and structures were altered to match the residual system distortion measured by the phantoms on each scanner. The patient CTs were also registered to the corresponding patient MRI scans, to assess patient and residual system effects. Tangential IMRT plans were generated and optimized on each resulting CT dataset, then propagated to the original patient CT space. The resulting dose distributions were then evaluated with respect to the standard clinically acceptable DVH and visual assessment criteria. Maximum residual systematic distortion was measured to be 7.9 mm (95%<4.7mm) and 11.9 mm (95%<4.6mm) for the 3T and 1T scanners, respectively, which did not result in clinically unacceptable plans. Eight of the plans accounting for patient and systematic distortions were deemed clinically unacceptable when assessed on the original CT. For these plans, the mean difference in PTV V95 (volume receiving 95% prescription dose) was 0.13±2.51% and -0.73±1.93% for right- and left-sided patients, respectively. Residual system distortions alone had minimal impact on the dosimetry for the two scanners investigated. The combination of MRI systematic and patient-related distortions can result in unacceptable dosimetry for whole-breast IMRT, a potential issue when considering MRI-only radiotherapy treatment planning. PACS number(s): 87.61.-c, 87.57.cp, 87.57.nj, 87.55.D.


Assuntos
Neoplasias da Mama/radioterapia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Órgãos em Risco/efeitos da radiação , Radiometria/métodos , Dosagem Radioterapêutica , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
16.
J Appl Clin Med Phys ; 16(2): 5201, 2015 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26103190

RESUMO

The purpose of this study was to describe our experience with 1.0T MR-SIM including characterization, quality assurance (QA) program, and features necessary for treatment planning. Staffing, safety, and patient screening procedures were developed. Utilization of an external laser positioning system (ELPS) and MR-compatible couchtop were illustrated. Spatial and volumetric analyses were conducted between CT-SIM and MR-SIM using a stereotactic QA phantom with known landmarks and volumes. Magnetic field inhomogeneity was determined using phase difference analysis. System-related, in-plane distortion was evaluated and temporal changes were assessed. 3D distortion was characterized for regions of interest (ROIs) 5-20 cm away from isocenter. American College of Radiology (ACR) recommended tests and impact of ELPS on image quality were analyzed. Combined ultrashort echotime Dixon (UTE/Dixon) sequence was evaluated. Amplitude-triggered 4D MRI was implemented using a motion phantom (2-10 phases, ~ 2 cm excursion, 3-5 s periods) and a liver cancer patient. Duty cycle, acquisition time, and excursion were evaluated between maximum intensity projection (MIP) datasets. Less than 2% difference from expected was obtained between CT-SIM and MR-SIM volumes, with a mean distance of < 0.2 mm between landmarks. Magnetic field inhomogeneity was < 2 ppm. 2D distortion was < 2 mm over 28.6-33.6 mm of isocenter. Within 5 cm radius of isocenter, mean 3D geometric distortion was 0.59 ± 0.32 mm (maximum = 1.65 mm) and increased 10-15 cm from isocenter (mean = 1.57 ± 1.06 mm, maximum = 6.26 mm). ELPS interference was within the operating frequency of the scanner and was characterized by line patterns and a reduction in signal-to-noise ratio (4.6-12.6% for TE = 50-150 ms). Image quality checks were within ACR recommendations. UTE/Dixon sequences yielded detectability between bone and air. For 4D MRI, faster breathing periods had higher duty cycles than slow (50.4% (3 s) and 39.4% (5 s), p < 0.001) and ~fourfold acquisition time increase was measured for ten-phase versus two-phase. Superior-inferior object extent was underestimated 8% (6 mm) for two-phase as compared to ten-phase MIPs, although < 2% difference was obtained for ≥ 4 phases. 4D MRI for a patient demonstrated acceptable image quality in ~ 7 min. MR-SIM was integrated into our workflow and QA procedures were developed. Clinical applicability was demonstrated for 4D MRI and UTE imaging to support MR-SIM for single modality treatment planning.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/radioterapia , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Radioterapia (Especialidade) , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Simulação por Computador , Humanos , Aumento da Imagem , Posicionamento do Paciente , Garantia da Qualidade dos Cuidados de Saúde , Software
17.
J Appl Clin Med Phys ; 15(5): 4843, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25207569

RESUMO

The purpose of this study is to evaluate the overall accuracy of intensity-modulated radiation therapy (IMRT) and RapidArc delivery using both flattening filter (FF) and flattening filter-free (FFF) modalities based on test cases developed by AAPM Task Group 119. Institutional confidence limits (CLs) were established as the baseline for patient specific treatment plan quality assurance (QA). The effects of gantry range, gantry speed, leaf speed, dose rate, as well as the capability to capture intentional errors, were evaluated by measuring a series of Picket Fence (PF) tests using the electronic portal imaging device (EPID) and EBT3 films. Both IMRT and RapidArc plans were created in a Solid Water phantom (30 × 30 × 15 cm3) for the TG-119 test cases representative of normal clinical treatment sites for all five photon energies (6X, 10X, 15X, 6X-FFF, 10X-FFF) and the Exact IGRT couch was included in the dose calculation. One high-dose point in the PTV and one low-dose point in the avoidance structure were measured with an ion chamber in each case for each energy. Similarly, two GAFCHROMIC EBT3 films were placed in the coronal planes to measure planar dose distributions in both high- and low-dose regions. The confidence limit was set to have 95% of the measured data fall within the tolerance. The mean of the absolute dose deviation for variable dose rate and gantry speed during RapidArc delivery was within 0.5% for all energies. The corresponding results for leaf speed tests were all within 0.4%. The combinations of dynamic leaf gap (DLG) and MLC transmission factor were optimized based on the ion chamber measurement results of RapidArc delivery for each energy. The average 95% CLs for the high-dose point in the PTV were 0.030 ± 0.007 (range, 0.022-0.038) for the IMRT plans and 0.029 ± 0.011 (range, 0.016-0.043) for the RapidArc plans. For low-point dose in the avoidance structures, the CLs were 0.029 ± 0.006 (range, 0.024-0.039) for the IMRT plans and 0.027 ± 0.013 (range, 0.017-0.047) for the RapidArc plans. The average 95% CLs using 3%/3 mm gamma criteria in the high-dose region were 5.9 ± 2.7 (range, 1.4-8.6) and 3.9 ± 2.9 (range, 1.5-8.8) for IMRT and RapidArc plans, respectively. The average 95% CLs in the low-dose region were 5.3 ± 2.6 (range, 1.2-7.4) and 3.7 ± 2.8 (range, 1.8-8.3) for IMRT and RapidArc plans, respectively. Based on ion chamber, as well as film measurements, we have established CLs values to ensure the high precision of IMRT and RapidArc delivery for both FF and FFF modalities.


Assuntos
Aceleradores de Partículas/instrumentação , Aceleradores de Partículas/normas , Guias de Prática Clínica como Assunto , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/instrumentação , Radioterapia Conformacional/normas , Desenho de Equipamento , Análise de Falha de Equipamento , Internacionalidade , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Med Phys ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843532

RESUMO

BACKGROUND: MRI-guided radiation therapy (MRgRT) requires unique quality assurance equipment to address MR-compatibility needs, minimize electron return effect, handle complex dose distributions, and evaluate real-time dosimetry for gating. Plastic scintillation detectors (PSDs) are an attractive option to address these needs. PURPOSE: To perform a comprehensive characterization of a multi-probe PSD system in a low-field 0.35 T MR-linac, including detector response assessment and gating performance. METHODS: A four-channel PSD system (HYPERSCINT RP-200) was assembled. A single channel was used to evaluate repeatability, percent depth dose (PDD), detector response as a function of orientation with respect to the magnetic field, and intersession variability. All four channels were used to evaluate repeatability, linearity, and output factors. The four PSDs were integrated into an MR-compatible motion phantom at isocenter and in gradient regions. Experiments were conducted to evaluate gating performance and tracking efficacy. RESULTS: For repeatability, the maximum standard deviation of repeated measurements was 0.13% (single PSD). Comparing the PSD to reference data, PDD had a maximum difference of 1.12% (10 cm depth, 6.64 × 6.64 cm2). Percent differences for rotated detector setups were negligible (< 0.3%). All four PSDs demonstrated linear response over 10-1000 MU delivered and the maximum percent difference between the baseline and measured output factors was 0.78% (2.49 × 2.49 cm2). Gating experiments had 400 cGy delivered to isocenter with < 0.8 cGy variation for central axis measures and < 0.7 cGy for the gradient sampled region. Real-time dosimetry measurements captured spurious beam-on incidents that correlated to tracking algorithm inaccuracies and highlighted gating parameter impact on delivery efficiency. CONCLUSIONS: Characterization of the multi-point PSD dosimetry system in a 0.35 T MR-linac demonstrated reliability in a low-field MR-Linac setting, with high repeatability, linearity, small intersession variability, and similarity to baseline data for PDD and output factors. Time-resolved, multi-point dosimetry also showed considerable promise for gated MR-Linac applications.

19.
Med Phys ; 51(4): 2998-3009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38060696

RESUMO

BACKGROUND: The static magnetic field present in magnetic resonance (MR)-guided radiotherapy systems can influence dose deposition and charged particle collection in air-filled ionization chambers. Thus, accurately quantifying the effect of the magnetic field on ionization chamber response is critical for output calibration. Formalisms for reference dosimetry in a magnetic field have been proposed, whereby a magnetic field quality conversion factor kB,Q is defined to account for the combined effects of the magnetic field on the radiation detector. Determination of kB,Q in the literature has focused on Monte Carlo simulation studies, with experimental validation limited to only a few ionization chamber models. PURPOSE: The purpose of this study is to experimentally measure kB,Q for 11 ionization chamber models in two commercially available MR-guided radiotherapy systems: Elekta Unity and ViewRay MRIdian. METHODS: Eleven ionization chamber models were characterized in this study: Exradin A12, A12S, A28, and A26, PTW T31010, T31021, and T31022, and IBA FC23-C, CC25, CC13, and CC08. The experimental method to measure kB,Q utilized cross-calibration against a reference Exradin A1SL chamber. Absorbed dose to water was measured for the reference A1SL chamber positioned parallel to the magnetic field with its centroid placed at the machine isocenter at a depth of 10 cm in water for a 10 × 10 cm2 field size at that depth. Output was subsequently measured with the test chamber at the same point of measurement. kB,Q for the test chamber was computed as the ratio of reference dose to test chamber output, with this procedure repeated for each chamber in each MR-guided radiotherapy system. For the high-field 1.5 T Elekta Unity system, the dependence of kB,Q on the chamber orientation relative to the magnetic field was quantified by rotating the chamber about the machine isocenter. RESULTS: Measured kB,Q values for our test dataset of ionization chamber models ranged from 0.991 to 1.002, and 0.995 to 1.004 for the Elekta Unity and ViewRay MRIdian, respectively, with kB,Q tending to increase as the chamber sensitive volume increased. Measured kB,Q values largely agreed within uncertainty to published Monte Carlo simulation data and available experimental data. kB,Q deviation from unity was minimized for ionization chamber orientation parallel or antiparallel to the magnetic field, with increased deviations observed at perpendicular orientations. Overall (k = 1) uncertainty in the experimental determination of the magnetic field quality conversion factor, kB,Q was 0.71% and 0.72% for the Elekta Unity and ViewRay MRIdian systems, respectively. CONCLUSIONS: For a high-field MR-linac, the characterization of ionization chamber performance as angular orientation varied relative to the magnetic field confirmed that the ideal orientation for output calibration is parallel. For most of these chamber models, this study represents the first experimental characterization of chamber performance in clinical MR-linac beams. This is a critical step toward accurate output calibration for MR-guided radiotherapy systems and the measured kB,Q values will be an important reference data source for forthcoming MR-linac reference dosimetry protocols.


Assuntos
Radiometria , Radioterapia Guiada por Imagem , Eficiência Biológica Relativa , Campos Magnéticos , Método de Monte Carlo , Água
20.
Artigo em Inglês | MEDLINE | ID: mdl-38797498

RESUMO

PURPOSE: Cardiac substructure dose metrics are more strongly linked to late cardiac morbidities than to whole-heart metrics. Magnetic resonance (MR)-guided radiation therapy (MRgRT) enables substructure visualization during daily localization, allowing potential for enhanced cardiac sparing. We extend a publicly available state-of-the-art deep learning framework, "No New" U-Net, to incorporate self-distillation (nnU-Net.wSD) for substructure segmentation for MRgRT. METHODS AND MATERIALS: Eighteen (institute A) patients who underwent thoracic or abdominal radiation therapy on a 0.35 T MR-guided linear accelerator were retrospectively evaluated. On each image, 1 of 2 radiation oncologists delineated reference contours of 12 cardiac substructures (chambers, great vessels, and coronary arteries) used to train (n = 10), validate (n = 3), and test (n = 5) nnU-Net.wSD by leveraging a teacher-student network and comparing it to standard 3-dimensional U-Net. The impact of using simulation data or including 3 to 4 daily images for augmentation during training was evaluated for nnU-Net.wSD. Geometric metrics (Dice similarity coefficient, mean distance to agreement, and 95% Hausdorff distance), visual inspection, and clinical dose-volume histograms were evaluated. To determine generalizability, institute A's model was tested on an unlabeled data set from institute B (n = 22) and evaluated via consensus scoring and volume comparisons. RESULTS: nnU-Net.wSD yielded a Dice similarity coefficient (reported mean ± SD) of 0.65 ± 0.25 across the 12 substructures (chambers, 0.85 ± 0.05; great vessels, 0.67 ± 0.19; and coronary arteries, 0.33 ± 0.16; mean distance to agreement, <3 mm; mean 95% Hausdorff distance, <9 mm) while outperforming the 3-dimensional U-Net (0.583 ± 0.28; P <.01). Leveraging fractionated data for augmentation improved over a single MR simulation time point (0.579 ± 0.29; P <.01). Predicted contours yielded dose-volume histograms that closely matched those of the clinical treatment plans where mean and maximum (ie, dose to 0.03 cc) doses deviated by 0.32 ± 0.5 Gy and 1.42 ± 2.6 Gy, respectively. There were no statistically significant differences between institute A and B volumes (P >.05) for 11 of 12 substructures, with larger volumes requiring minor changes and coronary arteries exhibiting more variability. CONCLUSIONS: This work is a critical step toward rapid and reliable cardiac substructure segmentation to improve cardiac sparing in low-field MRgRT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA