Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 541(7635): 68-71, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28054605

RESUMO

Hydrogen spillover is the surface migration of activated hydrogen atoms from a metal catalyst particle, on which they are generated, onto the catalyst support. The phenomenon has been much studied and its occurrence on reducible supports such as titanium oxide is established, yet questions remain about whether hydrogen spillover can take place on nonreducible supports such as aluminium oxide. Here we use the enhanced precision of top-down nanofabrication to prepare controlled and precisely tunable model systems that allow us to quantify the efficiency and spatial extent of hydrogen spillover on both reducible and nonreducible supports. We place multiple pairs of iron oxide and platinum nanoparticles on titanium oxide and aluminium oxide supports, varying the distance between the pairs from zero to 45 nanometres with a precision of one nanometre. We then observe the extent of the reduction of the iron oxide particles by hydrogen atoms generated on the platinum using single-particle in situ X-ray absorption spectromicroscopy applied simultaneously to all particle pairs. The data, in conjunction with density functional theory calculations, reveal fast hydrogen spillover on titanium oxide that reduces remote iron oxide nanoparticles via coupled proton-electron transfer. In contrast, spillover on aluminium oxide is mediated by three-coordinated aluminium centres that also interact with water and that give rise to hydrogen mobility competing with hydrogen desorption; this results in hydrogen spillover about ten orders of magnitude slower than on titanium oxide and restricted to very short distances from the platinum particle. We anticipate that these observations will improve our understanding of hydrogen storage and catalytic reactions involving hydrogen, and that our approach to creating and probing model catalyst systems will provide opportunities for studying the origin of synergistic effects in supported catalysts that combine multiple functionalities.

2.
Opt Lett ; 39(8): 2286-9, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978974

RESUMO

Manufacturing efficient and broadband optics is of high technological importance for various applications in all wavelength regimes. Particularly in the extreme ultraviolet and soft x-ray spectra, this becomes challenging due to the involved atomic absorption edges that rapidly change the optical constants in these ranges. Here we demonstrate a new interference lithography grating mask that can be used for nanopatterning in this spectral range. We demonstrate photolithography with cutting-edge resolution at 6.5 and 13.5 nm wavelengths, relevant to the semiconductor industry, as well as using 2.5 and 4.5 nm wavelength for patterning thick photoresists and fabricating high-aspect-ratio metal nanostructures for plasmonics and sensing applications.

3.
Nanotechnology ; 20(35): 355301, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19671962

RESUMO

A method for continuous 3D visualization of the mold filling at a microscopic level during a thermoplastic nanoimprint process was developed. It is based on superposition of micrographs of a series of different stages of imprint. It was applied to two common 3D microscopies with different resolution limitations. Due to advanced image processing, the animated movie sequence, available as supplementary multimedia information in the online version of this journal, gives an unprecedented insight into the complex polymer flow and shows how voids are forming and vanishing during the imprint process around micropillars. The method has advantages over current real-time methods and can be used as an analytical tool for optimization of processes and improvement of stamp design down to the sub-10 nm nanometer range.

4.
Sci Rep ; 6: 18818, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26732372

RESUMO

Understanding the chemistry of nanoparticles is crucial in many applications. Their synthesis in a controlled manner and their characterization at the single particle level is essential to gain deeper insight into chemical mechanisms. In this work, single nanoparticle spectro-microscopy with top-down nanofabrication is demonstrated to study individual iron nanoparticles of nine different lateral dimensions from 80 nm down to 6 nm. The particles are probed simultaneously, under same conditions, during in-situ redox reaction using X-ray photoemission electron microscopy elucidating the size effect during the early stage of oxidation, yielding time-dependent evolution of iron oxides and the mechanism for the inter-conversion of oxides in nanoparticles. Fabrication of well-defined system followed by visualization and investigation of singled-out particles eliminates the ambiguities emerging from dispersed nanoparticles and reveals a significant increase in the initial rate of oxidation with decreasing size, but the reactivity per active site basis and the intrinsic chemical properties in the particles remain the same in the scale of interest. This advance of nanopatterning together with spatially-resolved single nanoparticle X-ray absorption spectroscopy will guide future discourse in understanding the impact of confinement of metal nanoparticles and pave way to solve fundamental questions in material science, chemical physics, magnetism, nanomedicine and nanocatalysis.

5.
Sci Rep ; 5: 9235, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25783209

RESUMO

Extreme ultraviolet (EUV) lithography at 13.5 nm is the main candidate for patterning integrated circuits and reaching sub-10-nm resolution within the next decade. Should photon-based lithography still be used for patterning smaller feature sizes, beyond EUV (BEUV) lithography at 6.x nm wavelength is an option that could potentially meet the rigid demands of the semiconductor industry. We demonstrate simultaneous characterization of the resolution, line-edge roughness, and sensitivity of distinct photoresists at BEUV and compare their properties when exposed to EUV under the same conditions. By using interference lithography at these wavelengths, we show the possibility for patterning beyond 22 nm resolution and characterize the impact of using higher energy photons on the line-edge roughness and exposure latitude. We observe high sensitivity of the photoresist performance on its chemical content and compare their overall performance using the Z-parameter criterion. Interestingly, inorganic photoresists have much better performance at BEUV, while organic chemically-amplified photoresists would need serious adaptations for being used at such wavelength. Our results have immediate implications for deeper understanding of the radiation chemistry of novel photoresists at the EUV and soft X-ray spectra.

6.
Nanoscale ; 7(16): 7386-93, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25826457

RESUMO

Well-defined model systems are needed for better understanding of the relationship between optical, electronic, magnetic, and catalytic properties of nanoparticles and their structure. Chemical synthesis of metal nanoparticles results in large size and shape dispersion and lack of lateral order. In contrast, conventional top-down lithography techniques provide control over the lateral order and dimensions. However, they are either limited in resolution or have low throughput and therefore do not enable the large patterning area needed to obtain good signal-to-noise ratio in common analytical and characterization techniques. Extreme ultraviolet (EUV) lithography has the throughput and simplicity advantages of photolithography as well as high resolution due to its wavelength. Using EUV achromatic Talbot lithography, we have obtained 15 nm particle arrays with a periodicity of about 100 nm over an area of several square centimeters with high-throughput enabling the use of nanotechnology for fabrication of model systems to study large ensembles of well-defined identical nanoparticles with a density of 10(10) particles cm(-2).

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(3 Pt 2): 036305, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15524631

RESUMO

We describe ac electro-osmotic flow of an aqueous electrolyte on application of a traveling-wave electric field. Depending on the frequency of the applied traveling wave, the interaction of the electric double layer charge and the tangential electric field leads to fluid flow in the direction of the traveling wave. We have derived two theoretical models that describe this flow as a function of the amplitude of the applied electric potential, the signal frequency, and the material properties of the system. The first is based on a capacitative model and is limited to frequencies much lower than the double layer relaxation frequency. The second is an analytical solution of the electrokinetic equations and is also valid at higher frequencies. We provide experimental evidence that streaming takes place on application of a traveling wave of potential by tracing the movements of fluorescent latex beads over a spiral electrode structure. Streaming takes place at applied potentials low enough for the method to be easily integrated into lab-on-a-chip devices.

8.
J Biomed Mater Res A ; 101(8): 2355-64, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23359530

RESUMO

The use of metal implants in dental and orthopedic surgery is continuously expanding and highly successful. While today longevity and load-bearing capacity of the implants fulfill the expectations of the patients, acceleration of osseointegration would be of particular benefit to shorten the period of convalescence. To further clarify the options to accelerate the kinetics of osseointegration, within this study, the osteogenic properties of structurally identical surfaces with different metal coatings were investigated. To assess the development and function of primary human osteoblasts on metal surfaces, cell viability, differentiation, and gene expression were determined. Titanium surfaces were used as positive, and surfaces coated with gold were used as negative controls. Little differences in the cellular parameters tested for were found when the cells were grown on titanium discs sputter coated with titanium, zirconium, niobium, tantalum, gold, and chromium. Cell number, activity of cell layer-associated alkaline phosphatase (ALP), and levels of transcripts encoding COL1A1 and BGLAP did not vary significantly in dependence of the surface chemistry. Treatment of the cell cultures with 1,25(OH)2 D3 /Dex, however, significantly increased ALP activity and BGLAP messenger RNA levels. The data demonstrate that the metal layer coated onto the titanium discs exerted little modulatory effects on cell behavior. It is suggested that the microenvironment regulated by the peri-implant tissues is more effective in regulating the tissue response than is the material of the implant itself.


Assuntos
Materiais Biocompatíveis/química , Metais/química , Osteoblastos/citologia , Fosfatase Alcalina/metabolismo , Materiais Biocompatíveis/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Regulação da Expressão Gênica , Humanos , Metais/metabolismo , Osseointegração , Osteoblastos/metabolismo , Osteocalcina/genética , Propriedades de Superfície
9.
Biointerphases ; 7(1-4): 6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22589049

RESUMO

Using variothermal polymer micro-injection molding, disposable arrays of eight polymer micro-cantilevers each 500 µm long, 100 µm wide and 25 µm thick were fabricated. The present study took advantage of an easy flow grade polypropylene. After gold coating for optical read-out and asymmetrical sensitization, the arrays were introduced into the Cantisens(®) Research system to perform mechanical and functional testing. We demonstrate that polypropylene cantilevers can be used as biosensors for medical purposes in the same manner as the established silicon ones to detect single-stranded DNA sequences and metal ions in real-time. A differential signal of 7 nm was detected for the hybridization of 1 µM complementary DNA sequences. For 100 nM copper ions the differential signal was found to be (36 ± 5) nm. Nano-mechanical sensing of medically relevant, nanometer-size species is essential for fast and efficient diagnosis.


Assuntos
Técnicas Biossensoriais/métodos , Sistemas Microeletromecânicos , Polipropilenos/química , Polipropilenos/metabolismo , DNA de Cadeia Simples/análise , Humanos , Íons/análise , Metais/análise , Hibridização de Ácido Nucleico
10.
Opt Lett ; 28(13): 1087-9, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12879916

RESUMO

We report on the optimization of staircase grating profiles for the case of absorbing grating materials. Using a simple numerical algorithm, we determined the grating parameters, maximizing the first-order diffraction efficiency for different numbers of staircase steps. The results show that there is a significant difference between the staircase profiles for nonnegligible and negligible absorption. The obtained solutions are of importance for diffractive optics in the soft-x-ray and extreme-ultraviolet ranges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA