Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 72(1): 36-40, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37899177

RESUMO

The spectrum of 31P-NMR is fundamentally simpler than that of 1H-NMR; consequently identifying the target signal(s) for quantitation is simpler using quantitative 31P-NMR (31P-qNMR) than using quantitative 1H-NMR (1H-qNMR), which has been already established as an absolute determination method. We have previously reported a 31P-qNMR method for the absolute determination of cyclophosphamide hydrate and sofosbuvir as water-soluble and water-insoluble organophosphorus compounds, respectively. This study introduces the purity determination of brigatinib (BR), an organophosphorus compound with limited water solubility, using 31P-qNMR at multiple laboratories. Phosphonoacetic acid (PAA) and 1,4-BTMSB-d4 were selected as the reference standards (RSs) for 31P-qNMR and 1H-qNMR, respectively. The qNMR solvents were chosen based on the solubilities of BR and the RSs for qNMR. CD3OH was selected as the solvent for 31P-qNMR measurements to prevent the influence of deuterium exchange caused by the presence of exchangeable intramolecular protons of BR and PAA on the quantitative values, while CD3OD was the solvent of choice for the 1H-qNMR measurements to prevent the influence of water signals and the exchangeable intramolecular protons of BR and PAA. The mean purity of BR determined by 31P-qNMR was 97.94 ± 0.69%, which was in agreement with that determined by 1H-qNMR (97.26 ± 0.71%), thus indicating the feasibility of purity determination of BR by 31P-qNMR. Therefore, the findings of this study may provide an effective method that is simpler than conventional 1H-qNMR for the determination of organophosphorus compounds.


Assuntos
Compostos Organofosforados , Prótons , Padrões de Referência , Água , Solventes
2.
Nanomedicine ; 47: 102631, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410700

RESUMO

High-resolution cryogenic transmission electron microscopy (cryo-TEM) evidenced that doxorubicin sulfate crystals in liposomes (prepared by remote loading with ammonium sulfate) form folded, undulating, and fibrous crystals with a diameter of approximately 2.4 nm. An undulating, fibrous crystal considered to be undergrowth, in addition to bundles of fibrous crystals, was also observed in doxorubicin-loaded liposomes. This explains the validity of the formation of doxorubicin sulfate crystals of various shapes, e.g., curved, U-shaped, or circular, in addition to cylinder and/or rod-like crystals reported in the literature. Liposomes that do not contain crystals have inner aqueous phases with high electron density, suggesting that the doxorubicin is remotely loaded and remains as a solute without precipitation.


Assuntos
Lipossomos , Sulfatos , Doxorrubicina/farmacologia
3.
Anal Chem ; 94(10): 4218-4226, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35238540

RESUMO

The most common diagnostic method used for coronavirus disease-2019 (COVID-19) is real-time reverse transcription polymerase chain reaction (PCR). However, it requires complex and labor-intensive procedures and involves excessive positive results derived from viral debris. We developed a method for the direct detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal swabs, which uses matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-ToF MS) to identify specific peptides from the SARS-CoV-2 nucleocapsid phosphoprotein (NP). SARS-CoV-2 viral particles were separated from biological molecules in nasopharyngeal swabs by an ultrafiltration cartridge. Further purification was performed by an anion exchange resin, and purified NP was digested into peptides using trypsin. The peptides from SARS-CoV-2 that were inoculated into nasopharyngeal swabs were detected by MALDI-ToF MS, and the limit of detection was 106.7 viral copies. This value equates to 107.9 viral copies per swab and is approximately equivalent to the viral load of contagious patients. Seven NP-derived peptides were selected as the target molecules for the detection of SARS-CoV-2 in clinical specimens. The method detected between two and seven NP-derived peptides in 19 nasopharyngeal swab specimens from contagious COVID-19 patients. These peptides were not detected in four specimens in which SARS-CoV-2 RNA was not detected by PCR. Mutated NP-derived peptides were found in some specimens, and their patterns of amino acid replacement were estimated by accurate mass. Our results provide evidence that the developed MALDI-ToF MS-based method in a combination of straightforward purification steps and a rapid detection step directly detect SARS-CoV-2-specific peptides in nasopharyngeal swabs and can be a reliable high-throughput diagnostic method for COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Lasers , Nasofaringe , RNA Viral/genética , Manejo de Espécimes/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
4.
Chem Pharm Bull (Tokyo) ; 70(12): 892-900, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223954

RESUMO

Quantitative 1H-NMR (1H-qNMR) is useful for determining the absolute purity of organic molecules; however, it is sometimes difficult to identify the target signal(s) for quantitation because of their overlap and complexity. Therefore, we focused on the 31P nucleus because of the simplicity of its signals and previously reported 31P-qNMR in D2O. Here we report 31P-qNMR of an organophosphorus compound, sofosbuvir (SOF), which is soluble in organic solvents. Phosphonoacetic acid (PAA) and 1,4-bis(trimethylsilyl)benzene-d4 (1,4-BTMSB-d4) were used as reference standards for 31P-qNMR and 1H-qNMR, respectively, in methanol-d4. The purity of SOF determined by 31P-qNMR was 100.63 ± 0.95%, whereas that determined by 1H-qNMR was 99.07 ± 0.50%. The average half bandwidths of the 31P signal of PAA and SOF were 3.38 ± 2.39 and 2.22 ± 0.19 Hz, respectively, suggesting that the T2 relaxation time of the PAA signal was shorter than that of SOF and varied among test laboratories. This difference most likely arose from the instability in the chemical shift due to the deuterium exchange of the acidic protons of PAA, which decreased the integrated intensity of the PAA signal. Next, an aprotic solvent, dimethyl sulfoxide-d6 (DMSO-d6), was used as the dissolving solvent with PAA and sodium 4,4-dimethyl-4-silapentanesulfonate-d6 (DSS-d6) as reference standards for 31P-qNMR and 1H-qNMR, respectively. SOF purities determined by 31P-qNMR and 1H-qNMR were 99.10 ± 0.30 and 99.44 ± 0.29%, respectively. SOF purities determined by 31P-qNMR agreed with the established 1H-qNMR values, suggesting that an aprotic solvent is preferable for 31P-qNMR because it is unnecessary to consider the effect of deuterium exchange.


Assuntos
Imageamento por Ressonância Magnética , Sofosbuvir , Deutério , Espectroscopia de Ressonância Magnética , Padrões de Referência , Solventes
5.
J Am Chem Soc ; 143(14): 5526-5533, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33787233

RESUMO

Colibactin is a polyketide-nonribosomal peptide hybrid secondary metabolite that can form interstrand cross-links in double-stranded DNA. Colibactin-producing Escherichia coli has also been linked to colorectal oncogenesis. Thus, there is a strong interest in understanding the role colibactin may play in oncogenesis. Here, using the high-colibactin-producing wild-type E. coli strain we isolated from a clinical sample with the activity-based fluorescent probe we developed earlier, we were able to identify colibactin 770, which was recently identified and proposed as the complete form of colibactin, along with colibactin 788, 406, 416, 420, and 430 derived from colibactin 770 through structural rearrangements and solvolysis. Furthermore, we were able to trap the degrading mature colibactin species by converting the diketone moiety into quinoxaline in situ in the crude culture extract to form colibactin 860 at milligram scale. This allowed us to determine the stereochemically complex structure of the rearranged form of an intact colibactin, colibactin 788, in detail. Furthermore, our study suggested that we were capturing only a few percent of the actual colibactin produced by the microbe, providing a crude quantitative insight into the inherent instability of this compound. Through the structural assignment of colibactins and their degradative products by the combination of LC-HRMS and NMR spectroscopies, we were able to elucidate further the fate of inherently unstable colibactin, which could help acquire a more complete picture of colibactin metabolism and identify key DNA adducts and biomarkers for diagnosing colorectal cancer.


Assuntos
Escherichia coli/metabolismo , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Policetídeos/isolamento & purificação , Policetídeos/metabolismo , Escherichia coli/genética , Humanos , Peptídeos/química , Policetídeos/química , Temperatura
6.
Chem Pharm Bull (Tokyo) ; 69(6): 573-580, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33790074

RESUMO

Owing to occasional health damages caused by health food products derived from Pueraria mirifica (PM), the Japanese government has designated PM as an "ingredient calling for special attention." Miroestrol is a specific isoflavone isolated from PM and possesses very strong estrogenic activity enough to induce side effects in small amount. Therefore, routine analyses for miroestrol quantification is recommended to control the safety and quality of PM products. However, miroestrol content in PM is quite low, and commercial reagent for its detection is rarely available. In this study, we developed a quantitative analysis method for miroestrol in PM without using its analytical standard by using the relative molar sensitivity (RMS) of miroestrol to kwakhurin, another PM-specific isoflavone, as a reference standard. The RMS value was obtained by an offline combination of 1H-quantitative NMR spectroscopy and a LC/photo diode array (PDA) and miroestrol content was determined by single-reference LC/PDA using RMS. Furthermore, we investigated miroestrol content in commercially available PM crude drugs and products, and the RMS method was compared with the conventional calibration curve method in terms of performance. The rate of concordance of miroestrol contents determined by two method was 89-101%. The results revealed that our developed LC/PDA/MS method with RMS using kwakhurin as a reference standard was accurate for routine monitoring of miroestrol content in PM crude drugs and products to control their quality.


Assuntos
Fitoestrógenos/análise , Pueraria/química , Esteroides/análise , Cromatografia Líquida de Alta Pressão , Isoflavonas/análise , Espectrometria de Massas
7.
Chem Pharm Bull (Tokyo) ; 69(9): 872-876, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34470951

RESUMO

N-Nitrosodimethylamine (NDMA) is a probable human carcinogen. This study investigated the root cause of the presence of NDMA in ranitidine hydrochloride. Forced thermal degradation studies of ranitidine hydrochloride and its inherent impurities (Imps. A, B, C, D, E, F, G, H, I, J, and K) listed in the European and United States Pharmacopeias revealed that in addition to ranitidine, Imps. A, C, D, E, H, and I produce NDMA at different rates in a solid or an oily liquid state. The rate of NDMA formation from amorphous Imps. A, C, and E was 100 times higher than that from crystalline ranitidine hydrochloride under forced degradation at 110 °C for 1 h. Surprisingly, crystalline Imp. H, bearing neither the N,N-dialkyl-2-nitroethene-1,1-diamine moiety nor a dimethylamino group, also generated NDMA in the solid state, while Imp. I, as an oily liquid, favorably produced NDMA at moderate temperatures (e.g., 50 °C). Therefore, strict control of the aforementioned specific impurities in ranitidine hydrochloride during manufacturing and storage allows appropriate control of NDMA in ranitidine and its pharmaceutical products. Understanding the pathways of the stability related NDMA formation enables improved control of the pharmaceuticals to mitigate this risk.


Assuntos
Dimetilnitrosamina/síntese química , Ranitidina/química , Dimetilnitrosamina/química , Estrutura Molecular
8.
Chem Pharm Bull (Tokyo) ; 69(1): 26-31, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390518

RESUMO

As a new absolute quantitation method for low-molecular compounds, quantitative NMR (qNMR) has emerged. In the Japanese Pharmacopoeia (JP), 15 compounds evaluated by qNMR are listed as reagents used as the HPLC reference standards in the assay of crude drug section of the JP. In a previous study, we revealed that humidity affects purity values of hygroscopic reagents and that (i) humidity control before and during weighing is important for a reproducible preparation and (ii) indication of the absolute amount (not purity value), which is not affected by water content, is important for hygroscopic products determined by qNMR. In this study, typical and optimal conditions that affect the determination of the purity of ginsenoside Rb1 (GRB1), saikosaponin a (SSA), and barbaloin (BB) (i.e., hygroscopic reagents) by qNMR were examined. First, the effect of humidity before and during weighing on the purity of commercial GRB1, with a purity value determined by qNMR, was examined. The results showed the importance afore-mentioned. The results of SSA, which is relatively unstable in the dissolved state, suggested that the standardization of humidity control before and during weighing for a specific time provides a practical approach for hygroscopic products. In regard to BB, its humidity control for a specific time, only before weighing, is enough for a reproducible purity determination.


Assuntos
Antracenos/análise , Ginsenosídeos/análise , Higroscópicos/análise , Ácido Oleanólico/análogos & derivados , Saponinas/análise , Antracenos/normas , Ginsenosídeos/normas , Umidade , Higroscópicos/normas , Japão , Espectroscopia de Ressonância Magnética/normas , Ácido Oleanólico/análise , Ácido Oleanólico/normas , Saponinas/normas
9.
Chem Pharm Bull (Tokyo) ; 69(1): 118-123, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33087642

RESUMO

Quantitative NMR (qNMR) is applied to determine the absolute quantitative value of analytical standards for HPLC-based quantification. We have previously reported the optimal and reproducible sample preparation method for qNMR of hygroscopic reagents, such as saikosaponin a, which is used as an analytical standard in the assay of crude drug section of Japanese Pharmacopoeia (JP). In this study, we examined the absolute purity determination of a hygroscopic substance, indocyanine green (ICG), listed in the Japanese Pharmaceutical Codex 2002, using qNMR for standardization by focusing on the adaptation of ICG to JP. The purity of ICG, as an official non-Pharmacopoeial reference standard (non-PRS), had high variation (86.12 ± 2.70%) when preparing qNMR samples under non-controlled humidity (a conventional method). Additionally, residual ethanol (0.26 ± 0.11%) was observed in the non-PRS ICG. Next, the purity of non-PRS ICG was determined via qNMR when preparing samples under controlled humidity using a saturated sodium bromide solution. The purity was 84.19 ± 0.47% with a lower variation than that under non-controlled humidity. Moreover, ethanol signal almost disappeared. We estimated that residual ethanol in non-PRS ICG was replaced with water under controlled humidity. Subsequently, qNMR analysis was performed when preparing samples under controlled humidity in a constant temperature and humidity box. It showed excellent results with the lowest variation (82.26 ± 0.19%). As the use of a constant temperature and humidity box resulted in the lowest variability, it is recommended to use the control box if the reference ICG standard is needed for JP assays.


Assuntos
Verde de Indocianina/análise , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Molhabilidade
10.
Chem Pharm Bull (Tokyo) ; 69(7): 630-638, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33853973

RESUMO

Recently, quantitative NMR (qNMR), especially 1H-qNMR, has been widely used to determine the absolute quantitative value of organic molecules. We previously reported an optimal and reproducible sample preparation method for 1H-qNMR. In the present study, we focused on a 31P-qNMR absolute determination method. An organophosphorus compound, cyclophosphamide hydrate (CP), listed in the Japanese Pharmacopeia 17th edition was selected as the target compound, and the 31P-qNMR and 1H-qNMR results were compared under three conditions with potassium dihydrogen phosphate (KH2PO4) or O-phosphorylethanolamine (PEA) as the reference standard for 31P-qNMR and sodium 4,4-dimethyl-4-silapentanesulfonate-d6 (DSS-d6) as the standard for 1H-qNMR. Condition 1: separate sample containing CP and KH2PO4 for 31P-qNMR or CP and DSS-d6 for 1H-qNMR. Condition 2: mixed sample containing CP, DSS-d6, and KH2PO4. Condition 3: mixed sample containing CP, DSS-d6, and PEA. As conditions 1 and 3 provided good results, validation studies at multiple laboratories were further conducted. The purities of CP determined under condition 1 by 1H-qNMR at 11 laboratories and 31P-qNMR at 10 laboratories were 99.76 ± 0.43 and 99.75 ± 0.53%, respectively, and those determined under condition 3 at five laboratories were 99.66 ± 0.08 and 99.61 ± 0.53%, respectively. These data suggested that the CP purities determined by 31P-qNMR are in good agreement with those determined by the established 1H-qNMR method. Since the 31P-qNMR signals are less complicated than the 1H-qNMR signals, 31P-qNMR would be useful for the absolute quantification of compounds that do not have a simple and separate 1H-qNMR signal, such as a singlet or doublet, although further investigation with other compounds is needed.


Assuntos
Ciclofosfamida/análise , Água/análise , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fósforo
11.
Chem Pharm Bull (Tokyo) ; 68(5): 473-478, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32378545

RESUMO

The mechanical strength (stiffness) of liposomes affects their cellular uptake efficiency and drug release in drug delivery processes. We recently developed a tip shape evaluation method for improving the precision of liposome stiffness measurement by quantitative imaging (QI)-mode atomic force microscopy (AFM). The present study applied our method to the widely-used AFM instruments equipped for intermittent contact (IC)-mode force curve measurements, and examined instrument-dependent factors that affect the liposome stiffness measurements. We demonstrated that the evaluation of the tip shape for cantilever selection can be applicable to the IC mode as well as the QI mode. With the cantilever selection, the improved precision of the liposome stiffness was obtained when the stiffness of each liposome was determined from the slope in the force-deformation curve by the IC-mode force curve measurement. Further, the stiffness values were found to be similar to that measured by QI-mode measurements. These results indicate that our developed method can be widely used via IC-mode force curve measurements as well as via QI mode. It was also revealed that spatial drift of the cantilever position was instrument-dependent factors which could affect the precision of liposome stiffness measurements in the case of IC-mode force curve measurement. Therefore, in case of stiffness measurement by IC-mode force curve measurement, it is vital to obtain force-deformation curves immediately after imaging a liposome for the precise stiffness measurement of liposomes. These findings will promote the usage of the AFM stiffness measurement method for the characterization of lipid nanoparticle-based drug delivery systems.


Assuntos
Lipídeos/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Lipossomos/análise , Microscopia de Força Atômica
12.
Chem Pharm Bull (Tokyo) ; 68(11): 1109-1112, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132379

RESUMO

The occurrence of complex coacervation in an aqueous mixture of proteins (lysozyme, albumin, immunoglobulin G) and hyaluronic acid and its effect on protein transition in a model system was studied to elucidate factors determining the bioavailability of subcutaneously injected therapeutic proteins. Mixing of hyaluronic acid and the model proteins induced complex coacervation at solution pH close to or below the isoelectric point of the proteins. In vitro dialysis using membranes with large pore size tube represented a limitation in the protein transition of the coacervation mixture. Thermal analysis suggested there was retention of the protein conformation in the polymer complex.


Assuntos
Ácido Hialurônico/química , Imunoglobulina G/química , Modelos Moleculares , Muramidase/química , Albumina Sérica/química , Animais , Varredura Diferencial de Calorimetria , Bovinos , Humanos , Ácido Hialurônico/metabolismo , Concentração de Íons de Hidrogênio , Imunoglobulina G/metabolismo , Muramidase/metabolismo , Conformação Proteica , Albumina Sérica/metabolismo , Temperatura
13.
Chem Pharm Bull (Tokyo) ; 68(10): 1008-1012, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32779580

RESUMO

The purpose of this study was to elucidate the effect of high-temperature storage on the stability of ranitidine, specifically with respect to the potential formation of N-nitrosodimethylamine (NDMA), which is classified as a probable human carcinogen. Commercially available ranitidine reagent powders and formulations were stored under various conditions, and subjected to LC-MS/MS analysis. When ranitidine tablets from two different brands (designated as tablet A and tablet B) were stored under accelerated condition (40 °C with 75% relative humidity), following the drug stability guidelines issued by the International Conference on Harmonisation (ICH-Q1A), for up to 8 weeks, the amount of NDMA in them substantially increased from 0.19 to 116 ppm and from 2.89 to 18 ppm, respectively. The formation of NDMA that exceeded the acceptable daily intake limit (0.32 ppm) at the temperature used under accelerated storage conditions clearly highlights the risk of NDMA formation in ranitidine formulations when extrapolated to storage under ambient conditions. A forced-degradation study under the stress condition (60 °C for 1 week) strongly suggested that environmental factors such as moisture and oxygen are involved in the formation of NDMA in ranitidine formulations. Storage of ranitidine tablets and reagent powders at the high temperatures also increased the amount of nitrite, which is considered one of the factors influencing NDMA formation. These data indicate the necessity of controlling/monitoring stability-related factors, in addition to controlling impurities during the manufacturing process, in order to mitigate nitrosamine-related health risks of certain pharmaceuticals.


Assuntos
Dimetilnitrosamina/química , Ranitidina/química , Cromatografia Líquida de Alta Pressão , Composição de Medicamentos , Estabilidade de Medicamentos , Humanos , Nitritos/química , Nitrosaminas/química , Pós/química , Ranitidina/farmacologia , Comprimidos/química , Espectrometria de Massas em Tandem , Temperatura
14.
Chem Pharm Bull (Tokyo) ; 68(2): 140-149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32009081

RESUMO

Previously, we reported that the c-Met inhibitory effect of Ephedra Herb extract (EHE) is derived from ingredients besides ephedrine alkaloids. Moreover, analgesic and anti-influenza activities of EHE and ephedrine alkaloids-free Ephedra Herb extract (EFE) have been reported recently. In this study, we examined the fractions containing c-Met kinase inhibitory activity from EHE and the fractions with analgesic and anti-influenza activities from EFE, and elucidated the structural characteristics of the active fractions. Significant c-Met kinase activity was observed in 30, 40, and 50% methanol (MeOH) eluate fractions obtained from water extract of EHE using Diaion HP-20 column chromatography. Similarly, 20 and 40% MeOH, and MeOH eluate fractions obtained from water extract of EFE were found to display analgesic and anti-influenza activities. Reversed phase-HPLC analysis of the active fractions commonly showed broad peaks characteristic of high-molecular mass condensed tannin. The active fractions were analyzed using 13C-NMR and decomposition reactions; the deduced structures of active components were high-molecular mass condensed tannins, which were mainly procyanidin B-type and partly procyanidin A-type, including pyrogallol- and catechol-type flavan 3-ols as extension and terminal units. HPLC and gel permeation chromatography (GPC) analyses estimated that the ratio of pyrogallol- and catechol-type was approximately 9 : 2, and the weight-average molecular weight based on the polystyrene standard was >45000. Furthermore, GPC-based analysis was proposed as the quality evaluation method for high-molecular mass condensed tannin in EHE and EFE.


Assuntos
Ephedra/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Alcaloides/química , Alcaloides/farmacologia , Analgésicos/química , Analgésicos/farmacologia , Animais , Antivirais/química , Antivirais/farmacologia , Biflavonoides/química , Biflavonoides/farmacologia , Catequina/química , Catequina/farmacologia , Linhagem Celular Tumoral , Cães , Efedrina/química , Efedrina/farmacologia , Humanos , Células Madin Darby de Rim Canino , Masculino , Camundongos , Proantocianidinas/química , Proantocianidinas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores
15.
Chem Pharm Bull (Tokyo) ; 68(9): 868-878, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32565492

RESUMO

NMR spectroscopy has recently been utilized to determine the absolute amounts of organic molecules with metrological traceability since signal intensity is directly proportional to the number of each nucleus in a molecule. The NMR methodology that uses hydrogen nucleus (1H) to quantify chemicals is called quantitative 1H-NMR (1H qNMR). The quantitative method using 1H qNMR for determining the purity or content of chemicals has been adopted into some compendial guidelines and official standards. However, there are still few reports in the literature regarding validation of 1H qNMR methodology. Here, we coordinated an international collaborative study to validate a 1H qNMR based on the use of an internal calibration methodology. Thirteen laboratories participated in this study, and the purities of three samples were individually measured using 1H qNMR method. The three samples were all certified via conventional primary methods of measurement, such as butyl p-hydroxybenzoate Japanese Pharmacopeia (JP) reference standard certified by mass balance; benzoic acid certified reference material (CRM) certified by coulometric titration; fludioxonil CRM certified by a combination of freezing point depression method and 1H qNMR. For each sample, 1H qNMR experiments were optimized before quantitative analysis. The results showed that the measured values of each sample were equivalent to the corresponding reference labeled value. Furthermore, assessment of these 1H qNMR data using the normalized error, En-value, concluded that statistically 1H qNMR has the competence to obtain the same quantification performance and accuracy as the conventional primary methods of measurement.


Assuntos
Espectroscopia de Ressonância Magnética/normas , Ácido Benzoico/química , Calibragem , Dioxóis/química , Hidroxibenzoatos/química , Cooperação Internacional , Espectroscopia de Ressonância Magnética/métodos , Pirróis/química , Padrões de Referência , Reprodutibilidade dos Testes
16.
AAPS PharmSciTech ; 21(5): 158, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32458106

RESUMO

The relationship between the geometric particle size distribution (GPSD) and the aerodynamic particle size distribution (APSD) of commercial solution and suspension metered-dose inhaler (MDI) formulations was assessed to clarify the use of GPSD to estimate the APSD. The size distribution of particles discharged from four suspension and four solution MDIs was measured using the Inas®100 light-scattering spectrometer and a Next Generation Impactor. The conversion factor was calculated by measuring the GPSD and APSD of MDIs. The morphology and physical properties of MDIs were studied using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Six of the eight MDIs showed similar conversion factor profiles, irrespective of their composition and formulation types. Applying the conversion factor obtained from one of the six MDIs resulted in a particle size distribution comparable to each APSD except for some formulations. The two other solution MDIs, which contained citric acid, had much higher and variable conversion factors. SEM images and DSC scans of the solids obtained by nebulization of the solutions containing beclomethasone and/or citric acid showed the formation of a paste-like amorphous solid. These results indicated that APSD of solution and suspension MDIs that form rigid particles may be estimated by using the conversion factor and GPSD. Contrarily, the estimation is more difficult in formulations that tend to lose the particle structure during the measurement.


Assuntos
Inaladores Dosimetrados , Tamanho da Partícula , Administração por Inalação , Aerossóis/química , Beclometasona/química , Nebulizadores e Vaporizadores , Soluções , Suspensões
17.
AAPS PharmSciTech ; 21(4): 120, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32323091

RESUMO

The objective of this study was to develop a simpler and more practical quantitative evaluation method of cold flow (CF) in transdermal drug delivery systems (TDDSs). CF was forcibly induced by loading a weight on a punched-out sample (bisoprolol and tulobuterol tapes). When the extent of CF was analyzed using the area of oozed adhesive as following a previously reported method, the CF profiles were looked different between the samples 12 mm in diameter subjected to a 0.5-kg weight and samples 24 mm in diameter subjected to a 2.0-kg weight despite an equal load per unit area (4.42 g/mm2). The width of oozed adhesive around the original sample was suggested to be an index that properly describes the relationship between the load per unit area and the extent of CF. Further, it was clarified that the average CF width over the entire circumference of the sample was the same whether the samples were round or square as long as the sample area and load were the same. We also observed a linear relationship between the CF width and the aspect ratio of oval and rectangular samples. These results indicated that the CF properties of typical TDDS products lacking CF-proof processing at the edges could be determined by testing samples cut from the product rather than the whole TDDS patch. The proposed width measuring method was simple and useful for optimizing the composition of the adhesive and for testing the quality of the product.


Assuntos
Adesivos/farmacocinética , Temperatura Baixa , Sistemas de Liberação de Medicamentos/métodos , Terbutalina/análogos & derivados , Adesivos/administração & dosagem , Adesivos/química , Administração Cutânea , Agonistas Adrenérgicos beta/administração & dosagem , Agonistas Adrenérgicos beta/química , Agonistas Adrenérgicos beta/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Terbutalina/administração & dosagem , Terbutalina/química , Terbutalina/farmacocinética
18.
Angew Chem Int Ed Engl ; 59(22): 8464-8470, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32129542

RESUMO

Shimalactones A and B are neuritogenic polyketides possessing characteristic oxabicyclo[2.2.1]heptane and bicyclo[4.2.0]octadiene ring systems that are produced by the marine fungus Emericella variecolor GF10. We identified a candidate biosynthetic gene cluster and conducted heterologous expression analysis. Expression of ShmA polyketide synthase in Aspergillus oryzae resulted in the production of preshimalactone. Aspergillus oryzae and Saccharomyces cerevisiae transformants expressing ShmA and ShmB produced shimalactones A and B, thus suggesting that the double bicyclo-ring formation reactions proceed non-enzymatically from preshimalactone epoxide. DFT calculations strongly support the idea that oxabicyclo-ring formation and 8π-6π electrocyclization proceed spontaneously after opening of the preshimalactone epoxide ring through protonation. We confirmed the formation of preshimalactone epoxide in vitro, followed by its non-enzymatic conversion to shimalactones in the dark.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Lactonas/química , Lactonas/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Biotransformação , Ciclização , Família Multigênica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Anal Chem ; 91(16): 10432-10440, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31390864

RESUMO

The stiffness of nanoscale liposomes, as measured by atomic force microscopy (AFM), was investigated as a function of temperature, immobilization on solid substrates, and cantilever tip shape. The liposomes were composed of saturated lipids and cholesterol, and the stiffness values did not change over the temperature range of 25-37 °C and were independent of immobilization methods. However, the stiffness varied with the tip shape of the cantilever. Therefore, 24 cantilevers were evaluated in terms of tip shape and aspect ratio (length/width) via a nonblind tip reconstruction (NBTR) method that used a tip characterizer with isolated line structures having specified dimensions. A standard for screening the tip geometry was established. A 24-fold improvement in stiffness precision in terms of relative standard deviation was demonstrated by using at least three cantilevers that meet the criteria of having a tip aspect ratio greater than 2.5 and a quadratic tip shape function. A significant difference in stiffness was subsequently revealed between dipalmitoylphosphatidylcholine-cholesterol (1:1 molar ratio) and egg yolk phosphatidylcholine-cholesterol (1:1 molar ratio) liposomes. Tip analysis using NBTR improved the precision of AFM stiffness measurements, which will enable the control of mechanical properties of nanoscale liposomes for various applications.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Lipossomos/química , Microscopia de Força Atômica/métodos , Biotina/química , Ácidos Graxos Monoinsaturados/química , Vidro/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Compostos de Amônio Quaternário/química , Estreptavidina/química , Temperatura , Água/química
20.
Bioorg Med Chem Lett ; 29(24): 126686, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678008

RESUMO

The asteltoxin-producing fungus Emericella variecolor IFM42010 possesses 22 highly-reducing polyketide synthase (HR-PKS) genes. Of these, an HR-PKS with a methyltransferase domain but lacking an enoylreductase domain could be involved in the biosynthesis of asteltoxin and related compounds. From six such candidate HR-PKS genes, Ev460pks was analyzed by gene disruption in E. variecolor and heterologous expression in Aspergillus oryzae. The Ev460pks-disrupted strain retained asteltoxin production ability, indicating that Ev460pks is not involved in asteltoxin biosynthesis. The A. oryzae transformant harboring the Ev460pks gene produced compounds 1 and 2, along with several unidentified products possibly decomposed from 2. Spectroscopic analyses revealed that 1 was a 4-methyl-ß-ketolactone with a methylheptatriene side-chain at the C-5 position, and 2 was also a 4-methyl-ß-ketolactone, bearing a dimethyltetradecahexaene side-chain at the same position. The relative configuration at C-4 in compounds 1 and 2 was opposite.


Assuntos
Emericella/genética , Policetídeo Sintases/metabolismo , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA