Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lancet ; 402 Suppl 1: S92, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37997139

RESUMO

BACKGROUND: Age-related neurological conditions can result in poor mobility typified by gait abnormalities and falls, increasing risk of frailty and lowering quality of life. In the UK, the expense and inaccessibility of services to improve mobility through gait training (eg, auditory cueing) is a public health issue. Contemporary and scalable pervasive technologies for widespread public use could provide an affordable and accessible solution. We aimed to show the preliminary efficacy of a novel smartphone app that provides a personalised approach to mobility and gait assessment while facilitating gait training. METHODS: In this experimental study, we recruited participants aged 22-46 years with no physical functional impairments (ie, no age-related neurological condition and who could walk unaided) from Northumbria University staff (Newcastle upon Tyne, UK) between April 19, and May 26. Participants wore a smartphone on their lower back. Inertial data from the smartphone were recorded during two walks, one at a self-selected pace and the other with a personalised auditory cue via headphones (+10% pace on walk 1). Smartphone app functionality enabled the measurement of clinically relevant gait characteristics via a Python-based Cloud server. We compared smartphone-based mobility or gait characteristics with a gold-standard reference (Opal Mobility Lab, APDM). We used Pearson and intraclass correlation coefficients (ICC2,1) to examine agreement between the novel app and reference. The study ran from April 4 to July 21, 2023. This study received ethics approval from the Northumbria University Ethics committee, and all participants provided written informed consent. FINDINGS: Ten adults were recruited (six women and four men; mean age 27·4 years [SD 6·2], mean weight 79·6 kg [SD 12·7], mean height 174·7 cm [SD 7·9]). High levels of agreement were found between the smartphone app and reference, quantified by Pearson (≥0·858) and ICC values (≥0·911). The personalised cueing intervention increased the mean cadence by an average of 11%, which shows good participant adherence to cueing via an app. INTERPRETATION: Here, we propose a contemporary approach to increase the accessibility to a health-based intervention. Preliminary findings suggest the smartphone app is a suitable tool for personalised mobility or gait assessment while facilitating gait training. Use of a scalable app could be an accessible and affordable method for improving mobility to reduce falls in the home. Here, current limitations are the lack of investigation with the smartphone app for neurological gait assessment on older adults and the lack of information on participants app experience, but this will be included in future work. The pervasive use of smartphones enables a decentralised approach to overcoming issues such as frailty and logistical challenges of travelling to bespoke clinics. FUNDING: National Institute of Health and Care Research (NIHR) Applied Research Collaboration (ARC) North-East and North Cumbria (NENC); Faculty of Engineering and Environment at Northumbria University.


Assuntos
Fragilidade , Aplicativos Móveis , Masculino , Humanos , Feminino , Idoso , Adulto , Qualidade de Vida , Smartphone , Marcha
2.
Lancet ; 402 Suppl 1: S6, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37997103

RESUMO

BACKGROUND: Age-related mobility issues and frailty are a major public health concern because of an increased risk of falls. Subjective assessment of fall risk in the clinic is limited, failing to account for an individual's habitual activities in the home or community. Equally, objective mobility trackers for use in the home and community lack extrinsic (ie, environmental) data capture to comprehensively inform fall risk. We propose a contemporary approach that combines artificial intelligence (AI) and video glasses to augment current methods of fall risk assessment. METHODS: Two case studies were performed to provide a framework to assess extrinsic factors within fall risk assessment via video glasses. The first was AI-based detection of environment and terrain type. We developed convolutional neural networks (CNN) via a bespoke dataset (>145 000 images) captured from different settings (eg, offices, high streets) via free-licenced video on social media. AI automated a textual description to uphold privacy while describing the scene (eg, indoor and carpet). In the second case study, we provided video glasses to participants within a university campus (two men, 17 women; aged 21-60 years) to capture data for automatically labelling environment and objects (eg, fall hazards) via a CNN object detection algorithm. The case studies ran from Dec 5, 2022, to March 24, 2023. FINDINGS: To date, results show promise for the efficient, and accurate AI-based approach to better inform fall risk. Each component of the framework achieved at least 75% accuracy across a range of walks (indoor and outdoor and multiple terrains) from a dataset of 6283 new images. The AI achieved a mean average precision score of 0·93 for the identification of fall risk hazards. INTERPRETATIONS: The AI-based approach provides a contemporary means to better inform fall risk while providing an ethical means to uphold privacy. The proposed approach could have significant implications for improving overall health and quality of life, enabling ageing in place through habitual data collection with contemporary wearables to decentralise fall risk assessment. A limitation was the lack of data collection on older adults within real world, unscripted settings. However, the next phase of this research is the deployment of the AI on real-world data from a cohort of more than 40 participants within UK-based homes. FUNDING: National Institute of Health and Care Research (NIHR) Applied Research Collaboration (ARC) North-East and North Cumbria (NENC), Faculty of Engineering and Environment at Northumbria University.


Assuntos
Inteligência Artificial , Qualidade de Vida , Masculino , Humanos , Idoso , Feminino , Vida Independente , Medição de Risco , Acidentes por Quedas/prevenção & controle
3.
J Neuroeng Rehabil ; 21(1): 106, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909239

RESUMO

BACKGROUND: Falls are common in a range of clinical cohorts, where routine risk assessment often comprises subjective visual observation only. Typically, observational assessment involves evaluation of an individual's gait during scripted walking protocols within a lab to identify deficits that potentially increase fall risk, but subtle deficits may not be (readily) observable. Therefore, objective approaches (e.g., inertial measurement units, IMUs) are useful for quantifying high resolution gait characteristics, enabling more informed fall risk assessment by capturing subtle deficits. However, IMU-based gait instrumentation alone is limited, failing to consider participant behaviour and details within the environment (e.g., obstacles). Video-based eye-tracking glasses may provide additional insight to fall risk, clarifying how people traverse environments based on head and eye movements. Recording head and eye movements can provide insights into how the allocation of visual attention to environmental stimuli influences successful navigation around obstacles. Yet, manual review of video data to evaluate head and eye movements is time-consuming and subjective. An automated approach is needed but none currently exists. This paper proposes a deep learning-based object detection algorithm (VARFA) to instrument vision and video data during walks, complementing instrumented gait. METHOD: The approach automatically labels video data captured in a gait lab to assess visual attention and details of the environment. The proposed algorithm uses a YoloV8 model trained on with a novel lab-based dataset. RESULTS: VARFA achieved excellent evaluation metrics (0.93 mAP50), identifying, and localizing static objects (e.g., obstacles in the walking path) with an average accuracy of 93%. Similarly, a U-NET based track/path segmentation model achieved good metrics (IoU 0.82), suggesting that the predicted tracks (i.e., walking paths) align closely with the actual track, with an overlap of 82%. Notably, both models achieved these metrics while processing at real-time speeds, demonstrating efficiency and effectiveness for pragmatic applications. CONCLUSION: The instrumented approach improves the efficiency and accuracy of fall risk assessment by evaluating the visual allocation of attention (i.e., information about when and where a person is attending) during navigation, improving the breadth of instrumentation in this area. Use of VARFA to instrument vision could be used to better inform fall risk assessment by providing behaviour and context data to complement instrumented e.g., IMU data during gait tasks. That may have notable (e.g., personalized) rehabilitation implications across a wide range of clinical cohorts where poor gait and increased fall risk are common.


Assuntos
Acidentes por Quedas , Aprendizado Profundo , Caminhada , Acidentes por Quedas/prevenção & controle , Humanos , Medição de Risco/métodos , Caminhada/fisiologia , Masculino , Feminino , Adulto , Tecnologia de Rastreamento Ocular , Movimentos Oculares/fisiologia , Marcha/fisiologia , Gravação em Vídeo , Adulto Jovem
4.
Sensors (Basel) ; 24(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39123961

RESUMO

Falls are a major concern for people with Parkinson's disease (PwPD), but accurately assessing real-world fall risk beyond the clinic is challenging. Contemporary technologies could enable the capture of objective and high-resolution data to better inform fall risk through measurement of everyday factors (e.g., obstacles) that contribute to falls. Wearable inertial measurement units (IMUs) capture objective high-resolution walking/gait data in all environments but are limited by not providing absolute clarity on contextual information (i.e., obstacles) that could greatly influence how gait is interpreted. Video-based data could compliment IMU-based data for a comprehensive free-living fall risk assessment. The objective of this study was twofold. First, pilot work was conducted to propose a novel artificial intelligence (AI) algorithm for use with wearable video-based eye-tracking glasses to compliment IMU gait data in order to better inform free-living fall risk in PwPD. The suggested approach (based on a fine-tuned You Only Look Once version 8 (YOLOv8) object detection algorithm) can accurately detect and contextualize objects (mAP50 = 0.81) in the environment while also providing insights into where the PwPD is looking, which could better inform fall risk. Second, we investigated the perceptions of PwPD via a focus group discussion regarding the adoption of video technologies and AI during their everyday lives to better inform their own fall risk. This second aspect of the study is important as, traditionally, there may be clinical and patient apprehension due to ethical and privacy concerns on the use of wearable cameras to capture real-world video. Thematic content analysis was used to analyse transcripts and develop core themes and categories. Here, PwPD agreed on ergonomically designed wearable video-based glasses as an optimal mode of video data capture, ensuring discreteness and negating any public stigma on the use of research-style equipment. PwPD also emphasized the need for control in AI-assisted data processing to uphold privacy, which could overcome concerns with the adoption of video to better inform IMU-based gait and free-living fall risk. Contemporary technologies (wearable video glasses and AI) can provide a holistic approach to fall risk that PwPD recognise as helpful and safe to use.


Assuntos
Acidentes por Quedas , Algoritmos , Inteligência Artificial , Marcha , Doença de Parkinson , Humanos , Acidentes por Quedas/prevenção & controle , Doença de Parkinson/fisiopatologia , Medição de Risco/métodos , Marcha/fisiologia , Masculino , Idoso , Feminino , Gravação em Vídeo/métodos , Dispositivos Eletrônicos Vestíveis , Pessoa de Meia-Idade , Caminhada/fisiologia
5.
Exp Brain Res ; 241(9): 2191-2203, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37632535

RESUMO

Ocular microtremor (OMT) is the smallest of three involuntary fixational micro eye movements, which has led to it being under researched in comparison. The link between OMT and brain function generates a strong rationale for further study as there is potential for its use as a biomarker in populations with neurological injury and disease. This structured review focused on populations previously studied, instrumentation used for measurement, commonly reported OMT outcomes, and recommendations concerning protocol design and future studies. Current methods of quantifying OMT will be reviewed to analyze their efficacy and efficiency and guide potential development and understanding of novel techniques. Electronic databases were systematically searched and compared with predetermined inclusion criteria. 216 articles were identified in the search and screened by two reviewers. 16 articles were included for review. Findings showed that piezoelectric probe is the most common method of measuring OMT, with fewer studies involving non-invasive approaches, such as contact lenses and laser imaging. OMT frequency was seen to be reduced during general anesthesia at loss of consciousness and in neurologically impaired participants when compared to healthy adults. We identified the need for a non-invasive technique for measuring OMT and highlight its potential in clinical applications as an objective biomarker for neurological assessments. We highlight the need for further research on the clinical validation of OMT to establish its potential to identify or predict a meaningful clinical or functional state, specifically, regarding accuracy, precision, and reliability of OMT.


Assuntos
Olho , Face , Adulto , Humanos , Estado de Consciência , Reprodutibilidade dos Testes
6.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112441

RESUMO

Walking/gait quality is a useful clinical tool to assess general health and is now broadly described as the sixth vital sign. This has been mediated by advances in sensing technology, including instrumented walkways and three-dimensional motion capture. However, it is wearable technology innovation that has spawned the highest growth in instrumented gait assessment due to the capabilities for monitoring within and beyond the laboratory. Specifically, instrumented gait assessment with wearable inertial measurement units (IMUs) has provided more readily deployable devices for use in any environment. Contemporary IMU-based gait assessment research has shown evidence of the robust quantifying of important clinical gait outcomes in, e.g., neurological disorders to gather more insightful habitual data in the home and community, given the relatively low cost and portability of IMUs. The aim of this narrative review is to describe the ongoing research regarding the need to move gait assessment out of bespoke settings into habitual environments and to consider the shortcomings and inefficiencies that are common within the field. Accordingly, we broadly explore how the Internet of Things (IoT) could better enable routine gait assessment beyond bespoke settings. As IMU-based wearables and algorithms mature in their corroboration with alternate technologies, such as computer vision, edge computing, and pose estimation, the role of IoT communication will enable new opportunities for remote gait assessment.


Assuntos
Internet das Coisas , Dispositivos Eletrônicos Vestíveis , Marcha , Caminhada , Algoritmos
7.
Sensors (Basel) ; 23(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36679494

RESUMO

Running gait assessment is essential for the development of technical optimization strategies as well as to inform injury prevention and rehabilitation. Currently, running gait assessment relies on (i) visual assessment, exhibiting subjectivity and limited reliability, or (ii) use of instrumented approaches, which often carry high costs and can be intrusive due to the attachment of equipment to the body. Here, the use of an IoT-enabled markerless computer vision smartphone application based upon Google's pose estimation model BlazePose was evaluated for running gait assessment for use in low-resource settings. That human pose estimation architecture was used to extract contact time, swing time, step time, knee flexion angle, and foot strike location from a large cohort of runners. The gold-standard Vicon 3D motion capture system was used as a reference. The proposed approach performs robustly, demonstrating good (ICC(2,1) > 0.75) to excellent (ICC(2,1) > 0.90) agreement in all running gait outcomes. Additionally, temporal outcomes exhibit low mean error (0.01−0.014 s) in left foot outcomes. However, there are some discrepancies in right foot outcomes, due to occlusion. This study demonstrates that the proposed low-cost and markerless system provides accurate running gait assessment outcomes. The approach may help routine running gait assessment in low-resource environments.


Assuntos
Corrida , Smartphone , Humanos , Reprodutibilidade dos Testes , Fenômenos Biomecânicos , Marcha , Internet
8.
Sensors (Basel) ; 24(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202926

RESUMO

Mobility challenges threaten physical independence and good quality of life. Often, mobility can be improved through gait rehabilitation and specifically the use of cueing through prescribed auditory, visual, and/or tactile cues. Each has shown use to rectify abnormal gait patterns, improving mobility. Yet, a limitation remains, i.e., long-term engagement with cueing modalities. A paradigm shift towards personalised cueing approaches, considering an individual's unique physiological condition, may bring a contemporary approach to ensure longitudinal and continuous engagement. Sonification could be a useful auditory cueing technique when integrated within personalised approaches to gait rehabilitation systems. Previously, sonification demonstrated encouraging results, notably in reducing freezing-of-gait, mitigating spatial variability, and bolstering gait consistency in people with Parkinson's disease (PD). Specifically, sonification through the manipulation of acoustic features paired with the application of advanced audio processing techniques (e.g., time-stretching) enable auditory cueing interventions to be tailored and enhanced. These methods used in conjunction optimize gait characteristics and subsequently improve mobility, enhancing the effectiveness of the intervention. The aim of this narrative review is to further understand and unlock the potential of sonification as a pivotal tool in auditory cueing for gait rehabilitation, while highlighting that continued clinical research is needed to ensure comfort and desirability of use.


Assuntos
Doença de Parkinson , Qualidade de Vida , Humanos , Marcha , Acústica , Sinais (Psicologia)
9.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679685

RESUMO

Fall risk assessment needs contemporary approaches based on habitual data. Currently, inertial measurement unit (IMU)-based wearables are used to inform free-living spatio-temporal gait characteristics to inform mobility assessment. Typically, a fluctuation of those characteristics will infer an increased fall risk. However, current approaches with IMUs alone remain limited, as there are no contextual data to comprehensively determine if underlying mechanistic (intrinsic) or environmental (extrinsic) factors impact mobility and, therefore, fall risk. Here, a case study is used to explore and discuss how contemporary video-based wearables could be used to supplement arising mobility-based IMU gait data to better inform habitual fall risk assessment. A single stroke survivor was recruited, and he conducted a series of mobility tasks in a lab and beyond while wearing video-based glasses and a single IMU. The latter generated topical gait characteristics that were discussed according to current research practices. Although current IMU-based approaches are beginning to provide habitual data, they remain limited. Given the plethora of extrinsic factors that may influence mobility-based gait, there is a need to corroborate IMUs with video data to comprehensively inform fall risk assessment. Use of artificial intelligence (AI)-based computer vision approaches could drastically aid the processing of video data in a timely and ethical manner. Many off-the-shelf AI tools exist to aid this current need and provide a means to automate contextual analysis to better inform mobility from IMU gait data for an individualized and contemporary approach to habitual fall risk assessment.


Assuntos
Inteligência Artificial , Acidente Vascular Cerebral , Humanos , Marcha , Acidentes por Quedas/prevenção & controle , Medição de Risco
10.
Opt Express ; 30(22): 39922-39931, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298934

RESUMO

Blister formation occurs when a laser pulse interacts with the underside of a polymer film on a glass substrate and is fundamental in Laser-Induced Forward Transfer (LIFT). We present a novel method of controlling blister formation using a thin metal film situated between two thin polymer films. This enables a wide range of laser pulse energies by limiting the laser penetration in the film, which allows us to exploit nonlinear interactions without transmitting high intensities that may destroy a transfer material. We study blisters using a helium ion microscope, which images their interiors, and find that laser energy deposition is primarily in the metal layer and the top polymer layer remains intact. Blister expansion is driven by laser-induced spallation of the gold film. Our work shows that this technique could be a viable platform for contaminant-free LIFT using nonlinear absorption beyond the diffraction limit.

11.
J Neuroeng Rehabil ; 19(1): 79, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869527

RESUMO

BACKGROUND: Falls in older adults are a critical public health problem. As a means to assess fall risks, free-living digital biomarkers (FLDBs), including spatiotemporal gait measures, drawn from wearable inertial measurement unit (IMU) data have been investigated to identify those at high risk. Although gait-related FLDBs can be impacted by intrinsic (e.g., gait impairment) and/or environmental (e.g., walking surfaces) factors, their respective impacts have not been differentiated by the majority of free-living fall risk assessment methods. This may lead to the ambiguous interpretation of the subsequent FLDBs, and therefore, less precise intervention strategies to prevent falls. METHODS: With the aim of improving the interpretability of gait-related FLDBs and investigating the impact of environment on older adults' gait, a vision-based framework was proposed to automatically detect the most common level walking surfaces. Using a belt-mounted camera and IMUs worn by fallers and non-fallers (mean age 73.6 yrs), a unique dataset (i.e., Multimodal Ambulatory Gait and Fall Risk Assessment in the Wild (MAGFRA-W)) was acquired. The frames and image patches attributed to nine participants' gait were annotated: (a) outdoor terrains: pavement (asphalt, cement, outdoor bricks/tiles), gravel, grass/foliage, soil, snow/slush; and (b) indoor terrains: high-friction materials (e.g., carpet, laminated floor), wood, and tiles. A series of ConvNets were developed: EgoPlaceNet categorizes frames into indoor and outdoor; and EgoTerrainNet (with outdoor and indoor versions) detects the enclosed terrain type in patches. To improve the framework's generalizability, an independent training dataset with 9,424 samples was curated from different databases including GTOS and MINC-2500, and used for pretrained models' (e.g., MobileNetV2) fine-tuning. RESULTS: EgoPlaceNet detected outdoor and indoor scenes in MAGFRA-W with 97.36[Formula: see text] and 95.59[Formula: see text] (leave-one-subject-out) accuracies, respectively. EgoTerrainNet-Indoor and -Outdoor achieved high detection accuracies for pavement (87.63[Formula: see text]), foliage (91.24[Formula: see text]), gravel (95.12[Formula: see text]), and high-friction materials (95.02[Formula: see text]), which indicate the models' high generalizabiliy. CONCLUSIONS: Encouraging results suggest that the integration of wearable cameras and deep learning approaches can provide objective contextual information in an automated manner, towards context-aware FLDBs for gait and fall risk assessment in the wild.


Assuntos
Marcha , Caminhada , Idoso , Biomarcadores , Humanos , Medição de Risco
12.
J Neuroeng Rehabil ; 19(1): 49, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619112

RESUMO

BACKGROUND: Physical function remains a crucial component of mild traumatic brain injury (mTBI) assessment and recovery. Traditional approaches to assess mTBI lack sensitivity to detect subtle deficits post-injury, which can impact a patient's quality of life, daily function and can lead to chronic issues. Inertial measurement units (IMU) provide an opportunity for objective assessment of physical function and can be used in any environment. A single waist worn IMU has the potential to provide broad/macro quantity characteristics to estimate gait mobility, as well as more high-resolution micro spatial or temporal gait characteristics (herein, we refer to these as measures of quality). Our recent work showed that quantity measures of mobility were less sensitive than measures of turning quality when comparing the free-living physical function of chronic mTBI patients and healthy controls. However, no studies have examined whether measures of gait quality in free-living conditions can differentiate chronic mTBI patients and healthy controls. This study aimed to determine whether measures of free-living gait quality can differentiate chronic mTBI patients from controls. METHODS: Thirty-two patients with chronic self-reported balance symptoms after mTBI (age: 40.88 ± 11.78 years, median days post-injury: 440.68 days) and 23 healthy controls (age: 48.56 ± 22.56 years) were assessed for ~ 7 days using a single IMU at the waist on a belt. Free-living gait quality metrics were evaluated for chronic mTBI patients and controls using multi-variate analysis. Receiver operating characteristics (ROC) and Area Under the Curve (AUC) analysis were used to determine outcome sensitivity to chronic mTBI. RESULTS: Free-living gait quality metrics were not different between chronic mTBI patients and controls (all p > 0.05) whilst controlling for age and sex. ROC and AUC analysis showed stride length (0.63) was the most sensitive measure for differentiating chronic mTBI patients from controls. CONCLUSIONS: Our results show that gait quality metrics determined through a free-living assessment were not significantly different between chronic mTBI patients and controls. These results suggest that measures of free-living gait quality were not impaired in our chronic mTBI patients, and/or, that the metrics chosen were not sensitive enough to detect subtle impairments in our sample.


Assuntos
Concussão Encefálica , Adulto , Idoso , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico , Marcha , Humanos , Pessoa de Meia-Idade , Qualidade de Vida
13.
Sensors (Basel) ; 22(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36560259

RESUMO

Inertial sensor-based human activity recognition (HAR) has a range of healthcare applications as it can indicate the overall health status or functional capabilities of people with impaired mobility. Typically, artificial intelligence models achieve high recognition accuracies when trained with rich and diverse inertial datasets. However, obtaining such datasets may not be feasible in neurological populations due to, e.g., impaired patient mobility to perform many daily activities. This study proposes a novel framework to overcome the challenge of creating rich and diverse datasets for HAR in neurological populations. The framework produces images from numerical inertial time-series data (initial state) and then artificially augments the number of produced images (enhanced state) to achieve a larger dataset. Here, we used convolutional neural network (CNN) architectures by utilizing image input. In addition, CNN enables transfer learning which enables limited datasets to benefit from models that are trained with big data. Initially, two benchmarked public datasets were used to verify the framework. Afterward, the approach was tested in limited local datasets of healthy subjects (HS), Parkinson's disease (PD) population, and stroke survivors (SS) to further investigate validity. The experimental results show that when data augmentation is applied, recognition accuracies have been increased in HS, SS, and PD by 25.6%, 21.4%, and 5.8%, respectively, compared to the no data augmentation state. In addition, data augmentation contributes to better detection of stair ascent and stair descent by 39.1% and 18.0%, respectively, in limited local datasets. Findings also suggest that CNN architectures that have a small number of deep layers can achieve high accuracy. The implication of this study has the potential to reduce the burden on participants and researchers where limited datasets are accrued.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Humanos , Aprendizado de Máquina , Atividades Humanas , Reconhecimento Psicológico
14.
Sensors (Basel) ; 22(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36502023

RESUMO

Background: Turning is a complex measure of gait that accounts for over 50% of daily steps. Traditionally, turning has been measured in a research grade laboratory setting, however, there is demand for a low-cost and portable solution to measure turning using wearable technology. This study aimed to determine the suitability of a low-cost inertial sensor-based device (AX6, Axivity) to assess turning, by simultaneously capturing and comparing to a turn algorithm output from a previously validated reference inertial sensor-based device (Opal), in healthy young adults. Methodology: Thirty participants (aged 23.9 ± 4.89 years) completed the following turning protocol wearing the AX6 and reference device: a turn course, a two-minute walk (including 180° turns) and turning in place, alternating 360° turn right and left. Both devices were attached at the lumbar spine, one Opal via a belt, and the AX6 via double sided tape attached directly to the skin. Turning measures included number of turns, average turn duration, angle, velocity, and jerk. Results: Agreement between the outcomes from the AX6 and reference device was good to excellent for all turn characteristics (all ICCs > 0.850) during the turning 360° task. There was good agreement for all turn characteristics (all ICCs > 0.800) during the two-minute walk task, except for moderate agreement for turn angle (ICC 0.683). Agreement for turn outcomes was moderate to good during the turns course (ICCs range; 0.580 to 0.870). Conclusions: A low-cost wearable sensor, AX6, can be a suitable and fit-for-purpose device when used with validated algorithms for assessment of turning outcomes, particularly during continuous turning tasks. Future work needs to determine the suitability and validity of turning in aging and clinical cohorts within low-resource settings.


Assuntos
Marcha , Dispositivos Eletrônicos Vestíveis , Adulto Jovem , Humanos , Caminhada , Algoritmos
15.
Sensors (Basel) ; 22(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214382

RESUMO

INTRODUCTION: Gait impairment occurs across the spectrum of traumatic brain injury (TBI); from mild (mTBI) to moderate (modTBI), to severe (sevTBI). Recent evidence suggests that objective gait assessment may be a surrogate marker for neurological impairment such as TBI. However, the most optimal method of objective gait assessment is still not well understood due to previous reliance on subjective assessment approaches. The purpose of this review was to examine objective assessment of gait impairments across the spectrum of TBI. METHODS: PubMed, AMED, OVID and CINAHL databases were searched with a search strategy containing key search terms for TBI and gait. Original research articles reporting gait outcomes in adults with TBI (mTBI, modTBI, sevTBI) were included. RESULTS: 156 citations were identified from the search, of these, 13 studies met the initial criteria and were included into the review. The findings from the reviewed studies suggest that gait is impaired in mTBI, modTBI and sevTBI (in acute and chronic stages), but methodological limitations were evident within all studies. Inertial measurement units were most used to assess gait, with single-task, dual-task and obstacle crossing conditions used. No studies examined gait across the full spectrum of TBI and all studies differed in their gait assessment protocols. Recommendations for future studies are provided. CONCLUSION: Gait was found to be impaired in TBI within the reviewed studies regardless of severity level (mTBI, modTBI, sevTBI), but methodological limitations of studies (transparency and reproducibility) limit clinical application. Further research is required to establish a standardised gait assessment procedure to fully determine gait impairment across the spectrum of TBI with comprehensive outcomes and consistent protocols.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Adulto , Marcha , Humanos , Reprodutibilidade dos Testes
16.
Sensors (Basel) ; 21(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34640799

RESUMO

Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete wearable attachment and long data recording possibilities within indoor and outdoor environments. Previously, lower back and shin/shank-based IMU algorithms detecting initial and final contact events (ICs-FCs) were developed and validated on a limited number of healthy young adults (YA), reporting that both IMU wear locations are suitable to use during indoor and outdoor gait analysis. However, the impact of age (e.g., older adults, OA), pathology (e.g., Parkinson's Disease, PD) and/or environment (e.g., indoor vs. outdoor) on algorithm accuracy have not been fully investigated. Here, we examined IMU gait data from 128 participants (72-YA, 20-OA, and 36-PD) to thoroughly investigate the suitability of ICs-FCs detection algorithms (1 × lower back and 1 × shin/shank-based) for quantifying temporal gait characteristics depending on IMU wear location and walking environment. The level of agreement between algorithms was investigated for different cohorts and walking environments. Although mean temporal characteristics from both algorithms were significantly correlated for all groups and environments, subtle but characteristically nuanced differences were observed between cohorts and environments. The lowest absolute agreement level was observed in PD (ICC2,1 = 0.979, 0.806, 0.730, 0.980) whereas highest in YA (ICC2,1 = 0.987, 0.936, 0.909, 0.989) for mean stride, stance, swing, and step times, respectively. Absolute agreement during treadmill walking (ICC2,1 = 0.975, 0.914, 0.684, 0.945), indoor walking (ICC2,1 = 0.987, 0.936, 0.909, 0.989) and outdoor walking (ICC2,1 = 0.998, 0.940, 0.856, 0.998) was found for mean stride, stance, swing, and step times, respectively. Findings of this study suggest that agreements between algorithms are sensitive to the target cohort and environment. Therefore, researchers/clinicians should be cautious while interpreting temporal parameters that are extracted from inertial sensors-based algorithms especially for those with a neurological condition.


Assuntos
Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Idoso , Algoritmos , Marcha , Humanos , Doença de Parkinson/diagnóstico , Caminhada , Adulto Jovem
17.
Opt Express ; 28(8): 11267-11279, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403641

RESUMO

We report ultrafast-laser-induced photochemical, structural, and morphological changes in a polyimide film irradiated at the polymer-glass interface in back-incident geometry. Back-illumination creates locally hot material at the interface leading to a confined photochemical change at the interface and a morphological change through a blister formation. The laser-induced photochemical changes in polyimide resulted in new absorption and luminescence properties in the visible region. The laser-treated polyimide exhibited photoluminescence anisotropy resulting from formation of ordered polymer upon irradiation by linearly polarized ultrashort laser pulses. Confocal fluorescence microscopy resulted in similar observations to the bulk. Reflection-absorption infrared spectroscopy and X-ray photoelectron spectroscopy together indicated confinement of laser-induced chemical changes at the interface.

18.
Clin Orthop Relat Res ; 478(3): 482-503, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31390339

RESUMO

BACKGROUND: Aspects of physical functioning, including balance and gait, are affected after surgery for lower limb musculoskeletal tumors. These are not routinely measured but likely are related to how well patients function after resection or amputation for a bone or soft tissue sarcoma. Small, inexpensive portable accelerometers are available that might be clinically useful to assess balance and gait in these patients, but they have not been well studied. QUESTIONS/PURPOSES: In patients treated for lower extremity musculoskeletal tumors, we asked: (1) Are accelerometer-based body-worn monitor assessments of balance, gait, and timed up-and-go tests (TUG) feasible and acceptable? (2) Do these accelerometer-based body-worn monitor assessments produce clinically useful data (face validity), distinguish between patients and controls (discriminant validity), reflect findings obtained using existing clinical measures (convergent validity) and standard manual techniques in clinic (concurrent validity)? METHODS: This was a prospective cross-sectional study. Out of 97 patients approached, 34 adult patients treated for tumors in the femur/thigh (19), pelvis/hip (3), tibia/leg (9), or ankle/foot (3) were included in this study. Twenty-seven had limb-sparing surgery and seven underwent amputation. Patients performed standard activities while wearing a body-worn monitor on the lower back, including standing, walking, and TUG tests. Summary measures of balance (area [ellipsis], magnitude [root mean square {RMS}], jerkiness [jerk], frequency of postural sway below which 95% of power of acceleration power spectrum is observed [f95 of postural sway]), gait [temporal outcomes, step length and velocity], and TUG time were derived. Body-worn monitor assessments were evaluated for feasibility by investigating data loss and patient-reported acceptability and comfort. In addition, outcomes in patients were compared with datasets of healthy participants collected in parallel studies using identical methods as in this study to assess discriminant validity. Body-worn monitor assessments were also investigated for their relationships with routine clinical scales (the Musculoskeletal Tumour Society Scoring system [MSTS], the Toronto Extremity Salvage Score [TESS], and the Quality of life-Cancer survivors [QoL-CS)] to assess convergent validity and their agreement with standard manual techniques (video and stopwatch) to assess concurrent validity. RESULTS: Although this was a small patient group, there were initial indications that body-worn monitor assessments were well-tolerated, feasible to perform, acceptable to patients who responded (95% [19 of 20] of patients found the body-worn monitor acceptable and comfortable and 85% [17 of 20] found it user-friendly), and produced clinically useful data comparable with the evidence. Balance and gait measures distinguished patients and controls (discriminant validity), for instance balance outcome (ellipsis) in patients (0.0475 m/s [95% confidence interval 0.0251 to 0.0810]) was affected compared with controls (0.0007 m/s [95% CI 0.0003 to 0.0502]; p = 0.001). Similarly gait outcome (step time) was affected in patients (0.483 seconds [95% CI 0.451 to 0.512]) compared with controls (0.541 seconds [95% CI 0.496 to 0.573]; p < 0.001). Moreover, body-worn monitor assessments showed relationships with existing clinical scales (convergent validity), for instance ellipsis with MSTS (r = -0.393; p = 0.024). Similarly, manual techniques showed excellent agreement with body-worn monitor assessments (concurrent validity), for instance stopwatch time 22.28 +/- 6.93 seconds with iTUG time 21.18 +/- 6.23 seconds (intraclass correlation coefficient agreement = 0.933; p < 0.001). P < 0.05 was considered statistically significant. CONCLUSIONS: Although we had a small, heterogeneous patient population, this pilot study suggests that body-worn monitors might be useful clinically to quantify physical functioning in patients treated for lower extremity tumors. Balance and gait relate to disability and quality of life. These measurements could provide clinicians with useful novel information on balance and gait, which in turn could guide rehabilitation strategies. LEVEL OF EVIDENCE: Level III, diagnostic study.


Assuntos
Acelerometria/métodos , Neoplasias Ósseas/fisiopatologia , Avaliação da Deficiência , Sarcoma/fisiopatologia , Neoplasias de Tecidos Moles/fisiopatologia , Acelerometria/instrumentação , Adulto , Neoplasias Ósseas/cirurgia , Estudos Transversais , Estudos de Viabilidade , Feminino , Humanos , Extremidade Inferior/fisiopatologia , Extremidade Inferior/cirurgia , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Projetos Piloto , Período Pós-Operatório , Estudos Prospectivos , Reprodutibilidade dos Testes , Sarcoma/cirurgia , Neoplasias de Tecidos Moles/cirurgia , Dispositivos Eletrônicos Vestíveis , Adulto Jovem
19.
Sensors (Basel) ; 20(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861630

RESUMO

Asymmetry is a cardinal symptom of gait post-stroke that is targeted during rehabilitation. Technological developments have allowed accelerometers to be a feasible tool to provide digital gait variables. Many acceleration-derived variables are proposed to measure gait asymmetry. Despite a need for accurate calculation, no consensus exists for what is the most valid and reliable variable. Using an instrumented walkway (GaitRite) as the reference standard, this study compared the validity and reliability of multiple acceleration-derived asymmetry variables. Twenty-five post-stroke participants performed repeated walks over GaitRite whilst wearing a tri-axial accelerometer (Axivity AX3) on their lower back, on two occasions, one week apart. Harmonic ratio, autocorrelation, gait symmetry index, phase plots, acceleration, and jerk root mean square were calculated from the acceleration signals. Test-retest reliability was calculated, and concurrent validity was estimated by comparison with GaitRite. The strongest concurrent validity was obtained from step regularity from the vertical signal, which also recorded excellent test-retest reliability (Spearman's rank correlation coefficients (rho) = 0.87 and Intraclass correlation coefficient (ICC21) = 0.98, respectively). Future research should test the responsiveness of this and other step asymmetry variables to quantify change during recovery and the effect of rehabilitative interventions for consideration as digital biomarkers to quantify gait asymmetry.

20.
Int J Behav Nutr Phys Act ; 14(1): 167, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29221449

RESUMO

BACKGROUND: Existing evidence about the impact of retirement on physical activity (PA) has primarily focused on the average change in PA level after retirement in group-based studies. It is unclear whether findings regarding the direction of PA change after retirement from group-based studies apply to individuals. This study aimed to explore changes in PA, PA determinants and their inter-relationships during the retirement transition at the individual level. METHODS: A series of n-of-1 natural experiments were conducted with seven individuals who were aged 55-76 years and approaching retirement. PA was measured by tri-axial accelerometry. Twice-daily self-report and ecological momentary assessments of evidence- and theory-based determinants of PA (e.g. sleep length/quality, happiness, tiredness, stress, time pressure, pain, intention, perceived behavioural control, priority, goal conflict and goal facilitation) were collected via a questionnaire for a period of between 3 and 7 months, which included time before and after the participant's retirement date. A personalised PA determinant was also identified by each participant and measured daily for the duration of the study. Dynamic regression models for discrete time binary data were used to analyse data for each individual participant. RESULTS: Two participants showed a statistically significant increase in the probability of engaging in PA bouts after retirement and two participants showed a significant time trend for a decrease and increase in PA bouts over time during the pre- to post-retirement period, respectively. There was no statistically significant change in PA after retirement for the remaining participants. Most of the daily questionnaire variables were significantly associated with PA for one or more participants but there were no consistent pattern of PA predictors across participants. For some participants, the relationship between questionnaire variables and PA changed from pre- to post-retirement. CONCLUSIONS: The findings from this study demonstrate the impact of retirement on individual PA trajectories. Using n-of-1 methods can provide information about unique patterns and determinants of individual behaviour over time, which has been obscured in previous research. N-of-1 methods can be used as a tool to inform personalised PA interventions for individuals within the retirement transition.


Assuntos
Exercício Físico , Aposentadoria , Acelerometria , Idoso , Feminino , Comportamentos Relacionados com a Saúde , Humanos , Intenção , Masculino , Pessoa de Meia-Idade , Fatores Socioeconômicos , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA