RESUMO
Cells directly interact with the extracellular matrix (ECM) in their microenvironment; however, the mechanical properties of the networks at this scale are not well defined. This work describes a method to quantify ECM network strain in situ after the application of a known load. Visualization of the ECM in the native 3D organization is facilitated using murine embryos and a novel decellularization method. During embryonic development, the ECM architecture is less dense making it easier to visualize and manipulate. Briefly, embryonic day (E)14.5 forelimbs were harvested and incubated in an acrylamide-based hydrogel mixture to maintain the 3D architecture of the ECM during decellularization. After decellularization, forelimbs were stained for fibrillin-2 and proteoglycans to visualize different networks. Samples were imaged, before and after the application of a static load, using confocal microscopy. A MATLAB-based fast iterative digital volume correlation algorithm was used to quantify network displacement fields by comparing the reference and compressed z-stacks. We observed that the amount of Green-Lagrange strain experienced by different proteins was dependent on whether the sub-region analyzed was located within cartilage or the adjacent connective tissue. The combination of these experimental and computational methods will enable the development of constitutive equations that describe the material behavior of ECM networks. In the future, this information has the potential to improve the fabrication of physiologically relevant scaffolds by establishing mechanical guidelines for microenvironments that support beneficial cell-ECM interactions.
RESUMO
Wall shear stress (WSS)-a key regulator of endothelial function-is commonly estimated in vivo using simplified mathematical models based on Poiseuille's flow, assuming a quasi-steady parabolic velocity distribution, despite evidence that more rapidly time-varying, pulsatile blood flow during each cardiac cycle modulates flow-mediated dilation (FMD) in large arteries of healthy subjects. More exact and accurate models based on the well-established Womersley solution for rapidly changing blood flow have not been adopted clinically, potentially because the Womersley solution relies on the local pressure gradient, which is difficult to measure non-invasively. We have developed an open-source method for automatic reconstruction of unsteady, Womersley-derived velocity profiles, and WSS in conduit arteries. The proposed method (available online at https://doi.org/10.5281/zenodo.7576408) requires only the time-averaged diameter of the vessel and time-varying velocity data available from non-invasive imaging such as Doppler ultrasound. Validation of the method with subject-specific computational fluid dynamics and application to synthetic velocity waveforms in the common carotid, brachial, and femoral arteries reveals that the Poiseuille solution underestimates peak WSS 38.5%-55.1% during the acceleration and deceleration phases of systole and underestimates or neglects retrograde WSS. Following evidence that oscillatory shear significantly augments vasodilator production, it is plausible that mischaracterization of the shear stimulus by assuming parabolic flow leads to systematic underestimates of important biological effects of time-varying blood velocity in conduit arteries.
Assuntos
Artérias Carótidas , Hemodinâmica , Humanos , Velocidade do Fluxo Sanguíneo/fisiologia , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Angiografia , Ultrassonografia , Fluxo Pulsátil , Estresse Mecânico , Modelos CardiovascularesRESUMO
Background: Acute cardiovascular stress increases systemic wall shear stress (WSS)-a frictional force exerted by the flow of blood on vessel walls-which raises plasma nitrite concentration due to enhanced endothelial nitric oxide synthase (eNOS) activity. Upstream eNOS inhibition modulates distal perfusion, and autonomic stress increases both the consumption and vasodilatory effects of endogenous nitrite. Plasma nitrite maintains vascular homeostasis during exercise and disruption of nitrite bioavailability can lead to intermittent claudication. Hypothesis: During acute cardiovascular stress or strenuous exercise, we hypothesize enhanced production of nitric oxide (NO) by vascular endothelial cells raises nitrite concentrations in near-wall layers of flowing blood, resulting in cumulative NO concentrations in downstream arterioles sufficient for vasodilation. Confirmation and implications: Utilizing a multiscale model of nitrite transport in bifurcating arteries, we tested the hypothesis for femoral artery flow under resting and exercised states of cardiovascular stress. Results indicate intravascular transport of nitrite from upstream endothelium could result in vasodilator-active levels of nitrite in downstream resistance vessels. The hypothesis could be confirmed utilizing artery-on-a-chip technology to measure NO production rates directly and help validate numerical model predictions. Further characterization of this mechanism may improve our understanding of symptomatic peripheral artery occlusive disease and exercise physiology.
RESUMO
The circle of Willis (CW) allows blood to be redistributed throughout the brain during local ischemia; however, it is unlikely that the anatomic persistence of the CW across mammalian species is driven by natural selection of individuals with resistance to cerebrovascular disease typically occurring in elderly humans. To determine the effects of communicating arteries (CoAs) in the CW on cerebral pulse wave propagation and blood flow velocity, we simulated young, active adult humans undergoing different states of cardiovascular stress (i.e., fear and aerobic exercise) using discrete transmission line segments with stress-adjusted cardiac output, peripheral resistance, and arterial compliance. Phase delays between vertebrobasilar and carotid pulses allowed bidirectional shunting through CoAs: both posteroanterior shunting before the peak of the pulse waveform and anteroposterior shunting after internal carotid pressure exceeded posterior cerebral pressure. Relative to an absent CW without intact CoAs, the complete CW blunted anterior pulse waveforms, although limited to 3% and 6% reductions in peak pressure and pulse pressure, respectively. Systolic rate of change in pressure (i.e., ∂P/∂t) was reduced 15%-24% in the anterior vasculature and increased 23%-41% in the posterior vasculature. Bidirectional shunting through posterior CoAs was amplified during cardiovascular stress and increased peak velocity by 25%, diastolic-to-systolic velocity range by 44%, and blood velocity acceleration by 134% in the vertebrobasilar arteries. This effect may facilitate stress-related increases in blood flow to the cerebellum (improving motor coordination) and reticular-activating system (enhancing attention and focus) via a nitric oxide-dependent mechanism, thereby improving survival in fight-or-flight situations.NEW & NOTEWORTHY Hemodynamic modeling reveals potential evolutionary benefits of the intact circle of Willis (CW) during fear and aerobic exercise. The CW equalizes pulse waveforms due to bidirectional shunting of blood flow through communicating arteries, which boosts vertebrobasilar blood flow velocity and acceleration. These phenomena may enhance perfusion of the brainstem and cerebellum via nitric oxide-mediated vasodilation, improving performance of the reticular-activating system and motor coordination in survival situations.
Assuntos
Transtornos Cerebrovasculares , Círculo Arterial do Cérebro , Adulto , Idoso , Animais , Artérias , Velocidade do Fluxo Sanguíneo , Circulação Cerebrovascular , Hemodinâmica , HumanosRESUMO
Abdominal aortic aneurysms (AAAs) are characterized histopathologically by compromised elastic fiber integrity, lost smooth muscle cells or their function, and remodeled collagen. We used a recently introduced mouse model of AAAs that combines enzymatic degradation of elastic fibers and blocking of lysyl oxidase, and thus matrix cross-linking, to study progressive dilatation of the infrarenal abdominal aorta, including development of intraluminal thrombus. We quantified changes in biomaterial properties and biomechanical functionality within the aneurysmal segment as a function of time of enlargement and degree of thrombosis. Towards this end, we combined multi-modality imaging with state-of-the art biomechanical testing and histology to quantify regional heterogeneities for the first time and we used a computational model of arterial growth and remodeling to test multiple hypotheses, suggested by the data, regarding the degree of lost elastin, accumulation of glycosaminoglycans, and rates of collagen turnover. We found that standard histopathological findings can be misleading, while combining advanced experimental and computational methods revealed that glycosaminoglycan accumulation is pathologic, not adaptive, and that heightened collagen deposition is ineffective if not cross-linked. In conclusion, loss of elastic fiber integrity can be a strong initiator of aortic aneurysms, but it is the rate and effectiveness of fibrillar collagen remodeling that dictates enlargement. STATEMENT OF SIGNIFICANCE: Precise mechanisms by which abdominal aortic aneurysms enlarge remain unclear, but a recent elastase plus ß-aminopropionitrile mouse model provides new insight into disease progression. As in the human condition, the aortic degeneration and adverse remodeling are highly heterogeneous in this model. Our multi-modality experiments quantify and contrast the heterogeneities in geometry and biomaterial properties, and our computational modeling shows that standard histopathology can be misleading. Neither accumulating glycosaminoglycans nor frustrated collagen synthesis slow disease progression, thus highlighting the importance of stimulating adaptive collagen remodeling to limit lesion enlargement.
Assuntos
Aneurisma da Aorta Abdominal , Aminopropionitrilo/farmacologia , Animais , Aorta Abdominal , Modelos Animais de Doenças , Tecido Elástico , Elastina , Camundongos , Elastase PancreáticaRESUMO
OBJECTIVE: Dunkin Hartley guinea pigs, a commonly used animal model of osteoarthritis, were used to determine if high frequency ultrasound can ensure intra-articular injections are accurately positioned in the knee joint. METHODS: A high-resolution small animal ultrasound system with a 40 MHz transducer was used for image-guided injections. A total of 36 guinea pigs were anaesthetised with isoflurane and placed on a heated stage. Sterile needles were inserted directly into the knee joint medially, while the transducer was placed on the lateral surface, allowing the femur, tibia and fat pad to be visualised in the images. B-mode cine loops were acquired during 100 µl. We assessed our ability to visualise 1) important anatomical landmarks, 2) the needle and 3) anatomical changes due to the injection. RESULTS: From the ultrasound images, we were able to visualise clearly the movement of anatomical landmarks in 75% of the injections. The majority of these showed separation of the fat pad (67.1%), suggesting the injections were correctly delivered in the joint space. We also observed dorsal joint expansion (23%) and patellar tendon movement (10%) in a smaller subset of injections. CONCLUSION: The results demonstrate that this image-guided technique can be used to visualise the location of an intra-articular injection in the joints of guinea pigs. Future studies using an ultrasound-guided approach could help improve the injection accuracy in a variety of anatomical locations and animal models, in the hope of developing anti-arthritic therapies. Cite this article: Bone Joint Res 2015;4:1-5.