Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Plant Cell ; 32(5): 1361-1376, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32152187

RESUMO

Since the discovery two decades ago that transgenes are efficiently integrated into the genome of Physcomitrella patens by homologous recombination, this moss has been a premier model system to study evolutionary developmental biology questions, stem cell reprogramming, and the biology of nonvascular plants. P patens was the first non-seed plant to have its genome sequenced. With this level of genomic information, together with increasing molecular genetic tools, a large number of reverse genetic studies have propelled the use of this model system. A number of technological advances have recently opened the door to forward genetics as well as extremely efficient and precise genome editing in P patens Additionally, careful phylogenetic studies with increased resolution have suggested that P patens emerged from within Physcomitrium Thus, rather than Physcomitrella patens, the species should be named Physcomitrium patens Here we review these advances and describe the areas where P patens has had the most impact on plant biology.


Assuntos
Bryopsida/fisiologia , Modelos Biológicos , Evolução Biológica , Bryopsida/anatomia & histologia , Bryopsida/classificação , Bryopsida/genética , Filogenia , Poliploidia
2.
Am J Bot ; 110(11): e16249, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37792319

RESUMO

PREMISE: Bryophytes form a major component of terrestrial plant biomass, structuring ecological communities in all biomes. Our understanding of the evolutionary history of hornworts, liverworts, and mosses has been significantly reshaped by inferences from molecular data, which have highlighted extensive homoplasy in various traits and repeated bursts of diversification. However, the timing of key events in the phylogeny, patterns, and processes of diversification across bryophytes remain unclear. METHODS: Using the GoFlag probe set, we sequenced 405 exons representing 228 nuclear genes for 531 species from 52 of the 54 orders of bryophytes. We inferred the species phylogeny from gene tree analyses using concatenated and coalescence approaches, assessed gene conflict, and estimated the timing of divergences based on 29 fossil calibrations. RESULTS: The phylogeny resolves many relationships across the bryophytes, enabling us to resurrect five liverwort orders and recognize three more and propose 10 new orders of mosses. Most orders originated in the Jurassic and diversified in the Cretaceous or later. The phylogenomic data also highlight topological conflict in parts of the tree, suggesting complex processes of diversification that cannot be adequately captured in a single gene-tree topology. CONCLUSIONS: We sampled hundreds of loci across a broad phylogenetic spectrum spanning at least 450 Ma of evolution; these data resolved many of the critical nodes of the diversification of bryophytes. The data also highlight the need to explore the mechanisms underlying the phylogenetic ambiguity at specific nodes. The phylogenomic data provide an expandable framework toward reconstructing a comprehensive phylogeny of this important group of plants.


Assuntos
Briófitas , Hepatófitas , Filogenia , Briófitas/genética , Plantas/genética , Hepatófitas/genética
3.
Ann Bot ; 130(7): 951-964, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36075207

RESUMO

BACKGROUND AND AIMS: With some 7300 extant species, liverworts (Marchantiophyta) represent one of the major land plant lineages. The backbone relationships, such as the phylogenetic position of Ptilidiales, and the occurrence and timing of whole-genome duplications, are still contentious. METHODS: Based on analyses of the newly generated transcriptome data for 38 liverworts and complemented with those publicly available, we reconstructed the evolutionary history of liverworts and inferred gene duplication events along the 55 taxon liverwort species tree. KEY RESULTS: Our phylogenomic study provided an ordinal-level liverwort nuclear phylogeny and identified extensive gene tree conflicts and cyto-nuclear incongruences. Gene duplication analyses based on integrated phylogenomics and Ks distributions indicated no evidence of whole-genome duplication events along the backbone phylogeny of liverworts. CONCLUSIONS: With a broadened sampling of liverwort transcriptomes, we re-evaluated the backbone phylogeny of liverworts, and provided evidence for ancient hybridizations followed by incomplete lineage sorting that shaped the deep evolutionary history of liverworts. The lack of whole-genome duplication during the deep evolution of liverworts indicates that liverworts might represent one of the few major embryophyte lineages whose evolution was not driven by whole-genome duplications.


Assuntos
Hepatófitas , Filogenia , Hepatófitas/genética , Duplicação Gênica
4.
Mol Phylogenet Evol ; 161: 107171, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33798674

RESUMO

With some 7300 species of small nonvascular spore-producing plants, liverworts represent one of the major lineages of land plants. Although multi-locus molecular phylogenetic studies have elucidated relationships of liverworts at different taxonomic categories, the backbone phylogeny of liverworts is still to be fully resolved, especially for the placement of Ptilidiales and the relationships within Jungermanniales and Marchantiales. Here, we provided phylogenomic inferences of liverworts based on 42 newly sequenced and 24 published liverwort plastid genomes representing all but two orders of liverworts, and characterized the evolution of the plastome in liverworts. The structure of the plastid genome is overall conserved across the phylogeny of liverworts, with only two structural variants detected from simple thalloids, besides 18 out of 43 liverwort genera showing intron variations in their plastomes. Complex thalloid liverworts maintain the most plastid genes, and seem to undergo fewer gene deletions and pseudogenization events than other liverworts. Plastid phylogenetic inferences yielded mostly robustly supported relationships, and consistently resolved Ptilidiales as the sister to Porellales. The relative ratio of silent substitutions across the three genetic compartments (i.e., 1:15:10, for mitochondrial:plastid:nuclear) suggests that liverwort plastid genes have the potential to evolve faster than their nuclear counterparts, unlike in any other major land plant lineages where the mutation rate of nuclear genes overwhelm those of their plastid and mitochondrial counterparts.


Assuntos
Evolução Molecular , Genomas de Plastídeos/genética , Hepatófitas/citologia , Hepatófitas/genética , Filogenia , Plastídeos/genética
5.
Mol Phylogenet Evol ; 154: 106965, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956800

RESUMO

A new paradigm has slowly emerged regarding the diversification of bryophytes, with inferences from molecular data highlighting a dynamic evolution of their genome. However, comparative studies of expressed genes among closely related taxa is so far missing. Here we contrast the dimensions of the vegetative transcriptome of Funaria hygrometrica and Physcomitrium pyriforme against the genome of their relative, Physcomitrium (Physcomitrella) patens. These three species of Funariaceae share highly conserved vegetative bodies, and are partially sympatric, growing on mineral soil in mostly temperate regions. We analyzed the vegetative gametophytic transcriptome of F. hygrometrica and P. pyriforme and mapped short reads, transcripts, and proteins to the genome and gene space of P. patens. Only about half of the transcripts of F. hygrometrica map to their ortholog in P. patens, whereas at least 90% of those of P. pyriforme align to loci in P. patens. Such divergence is unexpected given the high morphological similarity of the gametophyte but reflects the estimated times of divergence of F. hygrometrica and P. pyriforme from P. patens, namely 55 and 20 mya, respectively. The newly sampled transcriptomes bear signatures of at least one, rather ancient, whole genome duplication (WGD), which may be shared with one reported for P. patens. The transcriptomes of F. hygrometrica and P. pyriforme reveal significant contractions or expansions of different gene families. While transcriptomes offer only an incomplete estimate of the gene space, the high number of transcripts obtained suggest a significant divergence in gene sequences, and gene number among the three species, indicative of a rather strong, dynamic genome evolution, shaped in part by whole, partial or localized genome duplication. The gene ontology of their specific and rapidly-evolving protein families, suggests that the evolution of the Funariaceae may have been driven by the diversification of metabolic genes that may optimize the adaptations to environmental conditions, a hypothesis well in line with ecological patterns in the genetic diversity and structure in seed plants.


Assuntos
Bryopsida/anatomia & histologia , Bryopsida/genética , Filogenia , Evolução Molecular , Genoma de Planta , Família Multigênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
6.
Mol Phylogenet Evol ; 150: 106860, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32473336

RESUMO

Species in the fungal genus Sticta form symbiotic associations primarily with either green algae or cyanobacteria, but tripartite associations or photosymbiodemes involving both types of photobionts occur in some species. Sticta is known to associate with green algae in the genus Symbiochloris. However, previous studies have shown that algae from other genera, such as Heveochlorella, may also be suitable partners for Sticta. We examined the diversity of green algal partners in the genus Sticta and assessed the patterns of association between the host fungus and its algal symbiont. We used multi-locus sequence data from multiple individuals collected in Australia, Cuba, Madagascar, Mauritius, New Zealand, Reunion and South America to infer phylogenies for fungal and algal partners and performed tests of congruence to assess coevolution between the partners. In addition, event-based methods were implemented to examine which cophylogenetic processes have led to the observed association patterns in Sticta and its green algal symbionts. Our results show that in addition to Symbiochloris, Sticta associates with green algae from the genera Chloroidium, Coccomyxa, Elliptochloris and Heveochlorella, the latter being the most common algal symbiont associated with Sticta in this study. Geography plays a strong role in shaping fungal-algal association patterns in Sticta as mycobionts associate with different algal lineages in different geographic locations. While fungal and algal phylogenies were mostly congruent, event-based methods did not find any evidence for cospeciation between the partners. Instead, the association patterns observed in Sticta and associated algae, were largely explained by other cophylogenetic events such as host-switches, losses of symbiont and failure of the symbiont to diverge with its host. Our results also show that tripartite associations with green algae evolved multiple times in Sticta.


Assuntos
Ascomicetos/classificação , Clorófitas/classificação , Ascomicetos/genética , Clorófitas/genética , Tipagem de Sequências Multilocus , Filogenia , RNA Ribossômico 18S/química , RNA Ribossômico 18S/classificação , RNA Ribossômico 18S/genética , Simbiose
7.
BMC Genomics ; 20(1): 953, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818248

RESUMO

BACKGROUND: In contrast to the highly labile mitochondrial (mt) genomes of vascular plants, the architecture and composition of mt genomes within the main lineages of bryophytes appear stable and invariant. The available mt genomes of 18 liverwort accessions representing nine genera and five orders are syntenous except for Gymnomitrion concinnatum whose genome is characterized by two rearrangements. Here, we expanded the number of assembled liverwort mt genomes to 47, broadening the sampling to 31 genera and 10 orders spanning much of the phylogenetic breadth of liverworts to further test whether the evolution of the liverwort mitogenome is overall static. RESULTS: Liverwort mt genomes range in size from 147 Kb in Jungermanniales (clade B) to 185 Kb in Marchantiopsida, mainly due to the size variation of intergenic spacers and number of introns. All newly assembled liverwort mt genomes hold a conserved set of genes, but vary considerably in their intron content. The loss of introns in liverwort mt genomes might be explained by localized retroprocessing events. Liverwort mt genomes are strictly syntenous in genome structure with no structural variant detected in our newly assembled mt genomes. However, by screening the paired-end reads, we do find rare cases of recombination, which means multiple concurrent genome structures may exist in the vegetative tissues of liverworts. Our phylogenetic analyses of the nuclear encoded double stand break repair protein families revealed liverwort-specific subfamilies expansions. CONCLUSIONS: The low repeat recombination level, selection, along with the intensified nuclear surveillance, might together shape the structural evolution of liverwort mt genomes.


Assuntos
Genoma Mitocondrial/genética , Hepatófitas/classificação , Hepatófitas/genética , Recombinação Genética/genética , Briófitas/classificação , Briófitas/genética , DNA Mitocondrial/genética , Embriófitas/classificação , Embriófitas/genética , Evolução Molecular , Genes Mitocondriais , Variação Genética , Tamanho do Genoma , Íntrons/genética , Filogenia , Análise de Sequência de DNA , Sintenia
8.
Mol Phylogenet Evol ; 122: 15-28, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29360617

RESUMO

Lichen biodiversity and its generative evolutionary processes are practically unknown in the MIOI (Madagascar and Indian Ocean Islands) biodiversity hotspot. We sought to test the hypothesis that lichenized fungi in this region have undergone a rapid radiation, following a single colonization event, giving rise to narrow endemics, as is characteristic of other lineages of plants. We extensively sampled specimens of the lichen genus Sticta in the Mascarene archipelago (mainly Réunion) and in Madagascar, mainly in the northern range (Amber Mt and Marojejy Mt) and produced the fungal ITS barcode sequence for 148 thalli. We further produced a four-loci data matrix for 68 of them, representing the diversity and geographical distribution of ITS haplotypes. We reconstructed the phylogenetic relationships within this group, established species boundaries with morphological context, and estimated the date of the most recent common ancestor. Our inferences resolve a robust clade comprising 31 endemic species of Sticta that arose from the diversification following a single recent (c. 11 Mya) colonization event. All but three species have a very restricted range, endemic to either the Mascarene archipelago or a single massif in Madagascar. The first genus of lichens to be studied with molecular data in this region underwent a recent radiation, exhibits micro-endemism, and thus exemplifies the biodiversity characteristics found in other taxa in Madagascar and the Mascarenes.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Biodiversidade , Evolução Biológica , DNA Mitocondrial/química , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Haplótipos , Madagáscar , Filogenia , RNA Polimerase II/química , RNA Polimerase II/classificação , RNA Polimerase II/genética
9.
Mol Phylogenet Evol ; 120: 240-247, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29222063

RESUMO

Rapid diversifications of plants are primarily documented and studied in angiosperms, which are perceived as evolutionarily dynamic. Recent studies have, however, revealed that bryophytes have also undergone periods of rapid radiation. The speciose family Funariaceae, including the model taxon Physcomitrella patens, is one such lineage. Here, we infer relationships among major lineages within the Entosthodon-Physcomitrium complex from virtually complete organellar exomes (i.e., 123 genes) obtained through high throughput sequencing of genomic libraries enriched in these loci via targeted locus capture. Based on these extensive exonic data we (1) reconstructed a robust backbone topology of the Funariaceae, (2) confirmed the monophyly of Funaria and the polyphyly of Entosthodon, Physcomitrella, and Physcomitrium, and (3) argue for the occurrence of a rapid radiation within the Entosthodon-Physcomitrium complex that began 28 mya and gave rise more than half of the species diversity of the family. This diversification may have been triggered by a whole genome duplication and coincides with global Eocene cooling that continued through the Oligocene and Miocene. The Funariaceae join a growing list of bryophyte lineages whose history is marked by at least one burst of diversification, and our study thereby strengthens the view that bryophytes are evolutionarily dynamic lineages and that patterns and processes characterizing the evolution of angiosperms may be universal among land plants.


Assuntos
Briófitas/classificação , Evolução Molecular , Briófitas/genética , Bryopsida/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA de Plantas/metabolismo , Éxons , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Plastídeos/classificação , Plastídeos/genética , Análise de Sequência de DNA
10.
Mol Phylogenet Evol ; 127: 606-612, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29890223

RESUMO

A latitudinal diversity gradient towards the tropics appears as one most recurrent patterns in ecology, but the mechanisms underlying this pattern remain an area of controversy. In angiosperms, the tropical conservatism hypothesis proposes that most groups originated in the tropics and are adapted to a tropical climatic regime, and that relatively few species have evolved physiological adaptations to cold, dry or unpredictable climates. This mechanism is, however, unlikely to apply across land plants, and in particular, to liverworts, a group of about 7500 species, whose ability to withstand cold much better than their tracheophyte counterparts is at odds with the tropical conservatism hypothesis. Molecular dating, diversification rate analyses and ancestral area reconstructions were employed to explore the evolutionary mechanisms that account for the latitudinal diversity gradient in liverworts. As opposed to angiosperms, tropical liverwort genera are not older than their extra-tropical counterparts (median stem age of tropical and extra-tropical liverwort genera of 24.35 ±â€¯39.65 Ma and 39.57 ±â€¯49.07 Ma, respectively), weakening the 'time for speciation hypothesis'. Models of ancestral area reconstructions with equal migration rates between tropical and extra-tropical regions outperformed models with asymmetrical migration rates in either direction. The symmetry and intensity of migrations between tropical and extra-tropical regions suggested by the lack of resolution in ancestral area reconstructions towards the deepest nodes are at odds with the tropical niche conservatism hypothesis. In turn, tropical genera exhibited significantly higher net diversification rates than extra-tropical ones, suggesting that the observed latitudinal diversity gradient results from either higher extinction rates in extra-tropical lineages or higher speciation rates in the tropics. We discuss a series of experiments to help deciphering the underlying evolutionary mechanisms.


Assuntos
Biodiversidade , Evolução Biológica , Hepatófitas/anatomia & histologia , Funções Verossimilhança , Filogenia , Filogeografia , Clima Tropical
11.
Mol Phylogenet Evol ; 126: 58-73, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29656104

RESUMO

A major challenge to evolutionary biologists is to understand how biodiversity is distributed through space and time and across the tree of life. Diversification of organisms is influenced by many factors that act at different times and geographic locations but it is still not clear which have a significant impact and how drivers interact. To study diversification, we chose the lichen genus Sticta, by sampling through most of the global range and producing a time tree. We estimate that Sticta originated about 30 million years ago, but biogoegraphic analysis was unclear in estimating the origin of the genus. Furthermore, we investigated the effect of dispersal ability finding that Sticta has a high dispersal rate, as collections from Hawaii showed that divergent lineages colonized the islands at least four times. Symbiont interactions were investigated using BiSSE to understand if green-algal or cyanobacterial symbiont interactions influenced diversification, only to find that the positive results were driven almost completely by Type I error. On the other hand, another BiSSE analysis found that an association with Andean tectonic activity increases the speciation rate of species.


Assuntos
Ascomicetos/classificação , Biodiversidade , Filogenia , Evolução Biológica , Extinção Biológica , Líquens/classificação , Filogeografia , Fatores de Tempo
12.
Mol Phylogenet Evol ; 117: 10-29, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28860010

RESUMO

Synteny can be maintained for certain genomic regions across broad phylogenetic groups. In these homologous genomic regions, sites that are under relaxed purifying selection, such as intergenic regions, could be used broadly as markers for population genetic and phylogenetic studies on species complexes. To explore the potential of this approach, we found 125 Collinear Orthologous Regions (COR) ranging from 1 to >10kb across nine genomes representing the Lecanoromycetes and Eurotiomycetes (Pezizomycotina, Ascomycota). Twenty-six of these COR were found in all 24 eurotiomycete genomes surveyed for this study. Given the high abundance and availability of fungal genomes we believe this approach could be adopted for other large groups of fungi outside the Pezizomycotina. Asa proof of concept, we selected three Collinear Orthologous Regions (COR1b, COR3, and COR16), based on synteny analyses of several genomes representing three classes of Ascomycota: Eurotiomycetes, Lecanoromycetes, and Lichinomycetes. COR16, for example, was found across these three classes of fungi. Here we compare the resolving power of these three new markers with five loci commonly used in phylogenetic studies of fungi, using section Polydactylon of the cyanolichen-forming genus Peltigera (Lecanoromycetes) - a clade with several challenging species complexes. Sequence data were subjected to three species discovery and two validating methods. COR markers substantially increased phylogenetic resolution and confidence, and highly contributed to species delimitation. The level of phylogenetic signal provided by each of the COR markers was higher than the commonly used fungal barcode ITS. High cryptic diversity was revealed by all methods. As redefined here, most species represent lineages that have relatively narrower, and more homogeneous biogeographical ranges than previously understood. The scabrosoid clade consists of ten species, seven of which are new. For the dolichorhizoid clade, twenty-two new species were discovered for a total of twenty-nine species in this clade.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Marcadores Genéticos/genética , Genoma Fúngico/genética , Genômica , Líquens/classificação , Líquens/genética , Filogenia , DNA Intergênico , Reprodutibilidade dos Testes , Especificidade da Espécie , Sintenia
13.
New Phytol ; 210(3): 1121-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27074401

RESUMO

Shifts in sexual systems are one of the key drivers of species diversification. In contrast to angiosperms, unisexuality prevails in bryophytes. Here, we test the hypotheses that bisexuality evolved from an ancestral unisexual condition and is a key innovation in liverworts. We investigate whether shifts in sexual systems influence diversification using hidden state speciation and extinction analysis (HiSSE). This new method compares the effects of the variable of interest to the best-fitting latent variable, yielding robust and conservative tests. We find that the transitions in sexual systems are significantly biased toward unisexuality, even though bisexuality is coupled with increased diversification. Sexual systems are strongly conserved deep within the liverwort tree but become much more labile toward the present. Bisexuality appears to be a key innovation in liverworts. Its effects on diversification are presumably mediated by the interplay of high fertilization rates, massive spore production and long-distance dispersal, which may separately or together have facilitated liverwort speciation, suppressed their extinction, or both. Importantly, shifts in liverwort sexual systems have the opposite effect when compared to angiosperms, leading to contrasting diversification patterns between the two groups. The high prevalence of unisexuality among liverworts suggests, however, a strong selection for sexual dimorphism.


Assuntos
Biodiversidade , Hepatófitas/fisiologia , Extinção Biológica , Especiação Genética , Filogenia , Estatística como Assunto
14.
Mol Phylogenet Evol ; 96: 195-199, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26724407

RESUMO

Bryophytes (mosses, liverworts, and hornworts) are diverse and ecologically and evolutionarily significant yet genome scale data sets and analyses remain extremely sparse relative to other groups of plants, and are completely lacking at the infraspecific level. By sequencing the complete organellar genomes and nuclear ribosomal repeat from seven patches of a South American sub-Antarctic neo-endemic non-model moss, we present the first characterization of infraspecific polymorphism within and across the three genomic compartments for a bryophyte. Diversity within patches is accounted for by both intraindividual and interindividual variation for the nuclear ribosomal repeat and plastid genome, respectively. This represents the most extensive infraspecific genomic dataset generated for an early land plant lineage thus far and provides insight into relative rates of substitution between organellar genomes, including high rates of nonsynonymous to synonymous substitutions.


Assuntos
Briófitas/citologia , Briófitas/genética , Núcleo Celular/genética , DNA Ribossômico/genética , Genoma de Planta/genética , Genômica , Organelas/genética , Conjuntos de Dados como Assunto , Evolução Molecular , Genomas de Plastídeos/genética , Plastídeos/genética , Polimorfismo Genético
15.
Mol Phylogenet Evol ; 96: 200-206, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26708122

RESUMO

The disjunction of floras between East Asia, Southeast North America, West North America, and Southwest Eurasia has been interpreted in terms of the fragmentation of a once continuous mixed mesophytic forest that occurred throughout the Northern Hemisphere due to the climatic and geological changes during the late Tertiary. The sword moss, Bryoxiphium, exhibits a distribution that strikingly resembles that of the mesophytic forest elements such as Liriodendron and is considered as the only living member of an early Tertiary flora in Iceland. These hypotheses are tested here using molecular dating analyses and ancestral area estimations. The results suggest that the extant range of Bryoxiphium results from the fragmentation of a formerly wider range encompassing North America and Southeast Asia about 10 million years ago. The split of continental ancestral populations is too recent to match with a continental drift scenario but is spatially and temporally remarkably congruent with that observed in Tertiary angiosperm relict species. The timing of the colonization of Iceland from Macaronesian ancestors, about two million years ago, is, however, incompatible with the hypothesis that Bryoxiphium is the only living member of an early Tertiary flora of the island. Alaska was recurrently colonized from East Asia. The ability of Bryoxiphium to overcome large oceanic barriers is further evidenced by its occurrence on remote oceanic archipelagos. In particular, Madeira was colonized twice independently from American and East Asian ancestors, respectively. The striking range disjunction of Bryoxiphium is interpreted in terms of its mating system, as the taxon exhibits a very singular pattern of spatial segregation of the sexes.


Assuntos
Bryopsida/genética , Filogenia , Alaska , Europa (Continente) , Ásia Oriental , Islândia , Magnoliopsida , América do Norte , Filogeografia
16.
Mol Phylogenet Evol ; 98: 29-40, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26811877

RESUMO

The pleurocarpous mosses (i.e., Hypnanae) are a species-rich group of land plants comprising about 6,000 species that share the development of female sex organs on short lateral branches, a derived trait within mosses. Many of the families within Hypnales, the largest order of pleurocarpous mosses, trace their origin to a rapid radiation less than 100 million years ago, just after the rise of the angiosperms. As a result, the phylogenetic resolution among families of Hypnales, necessary to test evolutionary hypotheses, has proven difficult using one or few loci. We present the first phylogenetic inference from high-throughput sequence data (transcriptome sequences) for pleurocarpous mosses. To test hypotheses of gene family evolution, we built a species tree of 21 pleurocarpous and six acrocarpous mosses using over one million sites from 659 orthologous genes. We used the species tree to investigate the genomic consequences of the shift to pleurocarpy and to identify whether patterns common to other plant radiations (gene family expansion, whole genome duplication, or changes in the molecular signatures of selection) could be observed. We found that roughly six percent of all gene families have expanded in the pleurocarpous mosses, relative to acrocarpous mosses. These gene families are enriched for several gene ontology (GO) terms, including interaction with other organisms. The increase in copy number coincident with the radiation of Hypnales suggests that a process such as whole genome duplication or a burst of small-scale duplications occurred during the diversification. In over 500 gene families we found evidence of a reduction in purifying selection. These gene families are enriched for several terms in the GO hierarchy related to "tRNA metabolic process." Our results reveal candidate genes and pathways that may be associated with the transition to pleurocarpy, illustrating the utility of phylotranscriptomics for the study of molecular evolution in non-model species.


Assuntos
Bryopsida/classificação , Bryopsida/genética , Evolução Molecular , Família Multigênica/genética , Filogenia , Transcriptoma
17.
Ann Bot ; 118(2): 185-96, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27268484

RESUMO

BACKGROUND AND AIMS: Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. METHODS: We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium KEY RESULTS: Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium CONCLUSIONS: Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification.


Assuntos
Genomas de Plastídeos/genética , Genômica , Sphagnopsida/classificação , Ecossistema , Evolução Molecular , Genoma Mitocondrial/genética , Genoma de Planta/genética , Modelos Biológicos , Filogenia , Plastídeos/genética , Análise de Sequência de DNA , Especificidade da Espécie , Sphagnopsida/genética
18.
Mol Biol Evol ; 31(10): 2586-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24980738

RESUMO

Among land plants, angiosperms have the structurally most labile mitochondrial (mt) genomes. In contrast, the so-called early land plants (e.g., mosses) seem to have completely static mt chromosomes. We assembled the complete mt genomes from 12 mosses spanning the moss tree of life, to assess 1) the phylogenetic depth of the conserved mt gene content and order and 2) the correlation between scattered sequence repeats and gene order lability in land plants. The mt genome of most mosses is approximately 100 kb in size, and thereby the smallest among land plants. Based on divergence time estimates, moss mt genome structure has remained virtually frozen for 350 My, with only two independent gene losses and a single gene relocation detected across the macroevolutionary tree. This is the longest period of mt genome stasis demonstrated to date in a plant lineage. The complete lack of intergenic repeat sequences, considered to be essential for intragenomic recombinations, likely accounts for the evolutionary stability of moss mt genomes.


Assuntos
Briófitas/genética , Genoma Mitocondrial , Briófitas/classificação , Briófitas/citologia , Evolução Molecular , Genoma de Planta , Instabilidade Genômica , Filogenia , Análise de Sequência de DNA
20.
Syst Biol ; 63(6): 862-78, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25070972

RESUMO

Phylogenetic analyses using concatenation of genomic-scale data have been seen as the panacea for resolving the incongruences among inferences from few or single genes. However, phylogenomics may also suffer from systematic errors, due to the, perhaps cumulative, effects of saturation, among-taxa compositional (GC content) heterogeneity, or codon-usage bias plaguing the individual nucleotide loci that are concatenated. Here, we provide an example of how these factors affect the inferences of the phylogeny of early land plants based on mitochondrial genomic data. Mitochondrial sequences evolve slowly in plants and hence are thought to be suitable for resolving deep relationships. We newly assembled mitochondrial genomes from 20 bryophytes, complemented these with 40 other streptophytes (land plants plus algal outgroups), compiling a data matrix of 60 taxa and 41 mitochondrial genes. Homogeneous analyses of the concatenated nucleotide data resolve mosses as sister-group to the remaining land plants. However, the corresponding translated amino acid data support the liverwort lineage in this position. Both results receive weak to moderate support in maximum-likelihood analyses, but strong support in Bayesian inferences. Tests of alternative hypotheses using either nucleotide or amino acid data provide implicit support for their respective optimal topologies, and clearly reject the hypotheses that bryophytes are monophyletic, liverworts and mosses share a unique common ancestor, or hornworts are sister to the remaining land plants. We determined that land plant lineages differ in their nucleotide composition, and in their usage of synonymous codon variants. Composition heterogeneous Bayesian analyses employing a nonstationary model that accounts for variation in among-lineage composition, and inferences from degenerated nucleotide data that avoid the effects of synonymous substitutions that underlie codon-usage bias, again recovered liverworts being sister to the remaining land plants but without support. These analyses indicate that the inference of an early-branching moss lineage based on the nucleotide data is caused by convergent compositional biases. Accommodating among-site amino acid compositional heterogeneity (CAT-model) yields no support for the optimal resolution of liverwort as sister to the rest of land plants, suggesting that the robust inference of the liverwort position in homogeneous analyses may be due in part to compositional biases among sites. All analyses support a paraphyletic bryophytes with hornworts composing the sister-group to tracheophytes. We conclude that while genomic data may generate highly supported phylogenetic trees, these inferences may be artifacts. We suggest that phylogenomic analyses should assess the possible impact of potential biases through comparisons of protein-coding gene data and their amino acid translations by evaluating the impact of substitutional saturation, synonymous substitutions, and compositional biases through data deletion strategies and by analyzing the data using heterogeneous composition models. We caution against relying on any one presentation of the data (nucleotide or amino acid) or any one type of analysis even when analyzing large-scale data sets, no matter how well-supported, without fully exploring the effects of substitution models.


Assuntos
Classificação , Embriófitas/classificação , Embriófitas/genética , Genômica , Filogenia , Viés , Códon/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA