Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 168(6): 1126-1134.e9, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28262353

RESUMO

Phosphate is essential for all living systems, serving as a building block of genetic and metabolic machinery. However, it is unclear how phosphate could have assumed these central roles on primordial Earth, given its poor geochemical accessibility. We used systems biology approaches to explore the alternative hypothesis that a protometabolism could have emerged prior to the incorporation of phosphate. Surprisingly, we identified a cryptic phosphate-independent core metabolism producible from simple prebiotic compounds. This network is predicted to support the biosynthesis of a broad category of key biomolecules. Its enrichment for enzymes utilizing iron-sulfur clusters, and the fact that thermodynamic bottlenecks are more readily overcome by thioester rather than phosphate couplings, suggest that this network may constitute a "metabolic fossil" of an early phosphate-free nonenzymatic biochemistry. Our results corroborate and expand previous proposals that a putative thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system. PAPERCLIP.


Assuntos
Simulação por Computador , Redes e Vias Metabólicas , Fosfatos/metabolismo , Nucleotídeos de Adenina/química , Algoritmos , Coenzima A , Coenzimas , Origem da Vida , Fosfatos/química , Termodinâmica
2.
Nature ; 586(7827): 120-126, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32968282

RESUMO

The genetic circuits that allow cancer cells to evade destruction by the host immune system remain poorly understood1-3. Here, to identify a phenotypically robust core set of genes and pathways that enable cancer cells to evade killing mediated by cytotoxic T lymphocytes (CTLs), we performed genome-wide CRISPR screens across a panel of genetically diverse mouse cancer cell lines that were cultured in the presence of CTLs. We identify a core set of 182 genes across these mouse cancer models, the individual perturbation of which increases either the sensitivity or the resistance of cancer cells to CTL-mediated toxicity. Systematic exploration of our dataset using genetic co-similarity reveals the hierarchical and coordinated manner in which genes and pathways act in cancer cells to orchestrate their evasion of CTLs, and shows that discrete functional modules that control the interferon response and tumour necrosis factor (TNF)-induced cytotoxicity are dominant sub-phenotypes. Our data establish a central role for genes that were previously identified as negative regulators of the type-II interferon response (for example, Ptpn2, Socs1 and Adar1) in mediating CTL evasion, and show that the lipid-droplet-related gene Fitm2 is required for maintaining cell fitness after exposure to interferon-γ (IFNγ). In addition, we identify the autophagy pathway as a conserved mediator of the evasion of CTLs by cancer cells, and show that this pathway is required to resist cytotoxicity induced by the cytokines IFNγ and TNF. Through the mapping of cytokine- and CTL-based genetic interactions, together with in vivo CRISPR screens, we show how the pleiotropic effects of autophagy control cancer-cell-intrinsic evasion of killing by CTLs and we highlight the importance of these effects within the tumour microenvironment. Collectively, these data expand our knowledge of the genetic circuits that are involved in the evasion of the immune system by cancer cells, and highlight genetic interactions that contribute to phenotypes associated with escape from killing by CTLs.


Assuntos
Genoma/genética , Genômica , Neoplasias/genética , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Animais , Autofagia , Linhagem Celular Tumoral , Feminino , Genes Neoplásicos/genética , Humanos , Interferon gama/imunologia , Masculino , Camundongos , NF-kappa B/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 119(14): e2110787119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344442

RESUMO

SignificanceMetabolism relies on a small class of molecules (coenzymes) that serve as universal donors and acceptors of key chemical groups and electrons. Although metabolic networks crucially depend on structurally redundant coenzymes [e.g., NAD(H) and NADP(H)] associated with different enzymes, the criteria that led to the emergence of this redundancy remain poorly understood. Our combination of modeling and structural and sequence analysis indicates that coenzyme redundancy may not be essential for metabolism but could rather constitute an evolved strategy promoting efficient usage of enzymes when biochemical reactions are near equilibrium. Our work suggests that early metabolism may have operated with fewer coenzymes and that adaptation for metabolic efficiency may have driven the rise of coenzyme diversity in living systems.


Assuntos
Coenzimas , NAD , Coenzimas/metabolismo , NAD/metabolismo , NADP/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35105804

RESUMO

Microbial communities frequently invade one another as a whole, a phenomenon known as community coalescence. Despite its potential importance for the assembly, dynamics, and stability of microbial consortia, as well as its prospective utility for microbiome engineering, our understanding of the processes that govern it is still very limited. Theory has suggested that microbial communities may exhibit cohesiveness in the face of invasions emerging from collective metabolic interactions across microbes and their environment. This cohesiveness may lead to correlated invasional outcomes, where the fate of a given taxon is determined by that of other members of its community-a hypothesis known as ecological coselection. Here, we have performed over 100 invasion and coalescence experiments with microbial communities of various origins assembled in two different synthetic environments. We show that the dominant members of the primary communities can recruit their rarer partners during coalescence (top-down coselection) and also be recruited by them (bottom-up coselection). With the aid of a consumer-resource model, we found that the emergence of top-down or bottom-up cohesiveness is modulated by the structure of the underlying cross-feeding networks that sustain the coalesced communities. The model also predicts that these two forms of ecological coselection cannot co-occur under our conditions, and we have experimentally confirmed that one can be strong only when the other is weak. Our results provide direct evidence that collective invasions can be expected to produce ecological coselection as a result of cross-feeding interactions at the community level.


Assuntos
Consórcios Microbianos/fisiologia , Modelos Biológicos
5.
Proc Natl Acad Sci U S A ; 117(52): 32910-32918, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376214

RESUMO

Redox biochemistry plays a key role in the transduction of chemical energy in living systems. However, the compounds observed in metabolic redox reactions are a minuscule fraction of chemical space. It is not clear whether compounds that ended up being selected as metabolites display specific properties that distinguish them from nonbiological compounds. Here, we introduce a systematic approach for comparing the chemical space of all possible redox states of linear-chain carbon molecules to the corresponding metabolites that appear in biology. Using cheminformatics and quantum chemistry, we analyze the physicochemical and thermodynamic properties of the biological and nonbiological compounds. We find that, among all compounds, aldose sugars have the highest possible number of redox connections to other molecules. Metabolites are enriched in carboxylic acid functional groups and depleted of ketones and aldehydes and have higher solubility than nonbiological compounds. Upon constructing the energy landscape for the full chemical space as a function of pH and electron-donor potential, we find that metabolites tend to have lower Gibbs energies than nonbiological molecules. Finally, we generate Pourbaix phase diagrams that serve as a thermodynamic atlas to indicate which compounds are energy minima in redox chemical space across a set of pH values and electron-donor potentials. While escape from thermodynamic equilibrium toward kinetically driven states is a hallmark of life and its origin, we envision that a deeper quantitative understanding of the environment-dependent thermodynamic landscape of putative prebiotic molecules will provide a crucial reference for future origins-of-life models.


Assuntos
Quimioinformática/métodos , Simulação de Dinâmica Molecular , Açúcares/química , Aldeídos/química , Configuração de Carboidratos , Ácidos Carboxílicos/química , Cetonas/química , Oxirredução
6.
Anal Chem ; 88(11): 6092-9, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27145348

RESUMO

In vivo isotopic labeling coupled with high-resolution proteomics is used to investigate primary metabolism in techniques such as stable isotope probing (protein-SIP) and peptide-based metabolic flux analysis (PMFA). Isotopic enrichment of carbon substrates and intracellular metabolism determine the distribution of isotopes within amino acids. The resulting amino acid mass distributions (AMDs) are convoluted into peptide mass distributions (PMDs) during protein synthesis. With no a priori knowledge on metabolic fluxes, the PMDs are therefore unknown. This complicates labeled peptide identification because prior knowledge on PMDs is used in all available peptide identification software. An automated framework for the identification and quantification of PMDs for nonuniformly labeled samples is therefore lacking. To unlock the potential of peptide labeling experiments for high-throughput flux analysis and other complex labeling experiments, an unsupervised peptide identification and quantification method was developed that uses discrete deconvolution of mass distributions of identified peptides to inform on the mass distributions of otherwise unidentifiable peptides. Uniformly (13)C-labeled Escherichia coli protein was used to test the developed feature reconstruction and deconvolution algorithms. The peptide identification was validated by comparing MS(2)-identified peptides to peptides identified from PMDs using unlabeled E. coli protein. Nonuniformly labeled Glycine max protein was used to demonstrate the technology on a representative sample suitable for flux analysis. Overall, automatic peptide identification and quantification were comparable or superior to manual extraction, enabling proteomics-based technology for high-throughput flux analysis studies.


Assuntos
Marcação por Isótopo , Peptídeos/análise , Algoritmos , Isótopos de Carbono , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo , Estrutura Molecular , Peptídeos/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Glycine max/química , Glycine max/metabolismo
7.
Plant J ; 77(3): 476-86, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24279886

RESUMO

¹³C metabolic flux analysis (MFA) has become the experimental method of choice to investigate the cellular metabolism of microbes, cell cultures and plant seeds. Conventional steady-state MFA utilizes isotopic labeling measurements of amino acids obtained from protein hydrolysates. To retain spatial information in conventional steady-state MFA, tissues or subcellular fractions must be dissected or biochemically purified. In contrast, peptides retain their identity in complex protein extracts, and may therefore be associated with a specific time of expression, tissue type and subcellular compartment. To enable 'single-sample' spatially and temporally resolved steady-state flux analysis, we investigated the suitability of peptide mass distributions (PMDs) as an alternative to amino acid label measurements. PMDs are the discrete convolution of the mass distributions of the constituent amino acids of a peptide. We investigated the requirements for the unique deconvolution of PMDs into amino acid mass distributions (AAMDs), the influence of peptide sequence length on parameter sensitivity, and how AAMD and flux estimates that are determined through deconvolution compare to estimates from a conventional GC-MS measurement-based approach. Deconvolution of PMDs of the storage protein ß-conglycinin of soybean (Glycine max) resulted in good AAMD and flux estimates if fluxes were directly fitted to PMDs. Unconstrained deconvolution resulted in inferior AAMD and flux estimates. PMD measurements do not include amino acid backbone fragments, which increase the information content in GC-MS-derived analyses. Nonetheless, the resulting flux maps were of comparable quality due to the precision of Orbitrap quantification and the larger number of peptide measurements.


Assuntos
Antígenos de Plantas/análise , Globulinas/análise , Glycine max/metabolismo , Análise do Fluxo Metabólico/métodos , Peptídeos/análise , Proteômica , Proteínas de Armazenamento de Sementes/análise , Proteínas de Soja/análise , Antígenos de Plantas/metabolismo , Isótopos de Carbono/análise , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Globulinas/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Peptídeos/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Sensibilidade e Especificidade , Proteínas de Soja/metabolismo
8.
Nat Ecol Evol ; 8(5): 999-1009, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519634

RESUMO

An unresolved question in the origin and evolution of life is whether a continuous path from geochemical precursors to the majority of molecules in the biosphere can be reconstructed from modern-day biochemistry. Here we identified a feasible path by simulating the evolution of biosphere-scale metabolism, using only known biochemical reactions and models of primitive coenzymes. We find that purine synthesis constitutes a bottleneck for metabolic expansion, which can be alleviated by non-autocatalytic phosphoryl coupling agents. Early phases of the expansion are enriched with enzymes that are metal dependent and structurally symmetric, supporting models of early biochemical evolution. This expansion trajectory suggests distinct hypotheses regarding the tempo, mode and timing of metabolic pathway evolution, including a late appearance of methane metabolisms and oxygenic photosynthesis consistent with the geochemical record. The concordance between biological and geological analyses suggests that this trajectory provides a plausible evolutionary history for the vast majority of core biochemistry.


Assuntos
Purinas , Purinas/biossíntese , Purinas/metabolismo , Evolução Biológica , Modelos Biológicos , Origem da Vida , Redes e Vias Metabólicas
9.
mSystems ; 9(10): e0076324, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39230322

RESUMO

Aerobes require dioxygen (O2) to grow; anaerobes do not. However, nearly all microbes-aerobes, anaerobes, and facultative organisms alike-express enzymes whose substrates include O2, if only for detoxification. This presents a challenge when trying to assess which organisms are aerobic from genomic data alone. This challenge can be overcome by noting that O2 utilization has wide-ranging effects on microbes: aerobes typically have larger genomes encoding distinctive O2-utilizing enzymes, for example. These effects permit high-quality prediction of O2 utilization from annotated genome sequences, with several models displaying ≈80% accuracy on a ternary classification task for which blind guessing is only 33% accurate. Since genome annotation is compute-intensive and relies on many assumptions, we asked if annotation-free methods also perform well. We discovered that simple and efficient models based entirely on genomic sequence content-e.g., triplets of amino acids-perform as well as intensive annotation-based classifiers, enabling rapid processing of genomes. We further show that amino acid trimers are useful because they encode information about protein composition and phylogeny. To showcase the utility of rapid prediction, we estimated the prevalence of aerobes and anaerobes in diverse natural environments cataloged in the Earth Microbiome Project. Focusing on a well-studied O2 gradient in the Black Sea, we found quantitative correspondence between local chemistry (O2:sulfide concentration ratio) and the composition of microbial communities. We, therefore, suggest that statistical methods like ours might be used to estimate, or "sense," pivotal features of the chemical environment using DNA sequencing data.IMPORTANCEWe now have access to sequence data from a wide variety of natural environments. These data document a bewildering diversity of microbes, many known only from their genomes. Physiology-an organism's capacity to engage metabolically with its environment-may provide a more useful lens than taxonomy for understanding microbial communities. As an example of this broader principle, we developed algorithms that accurately predict microbial dioxygen utilization directly from genome sequences without annotating genes, e.g., by considering only the amino acids in protein sequences. Annotation-free algorithms enable rapid characterization of natural samples, highlighting quantitative correspondence between sequences and local O2 levels in a data set from the Black Sea. This example suggests that DNA sequencing might be repurposed as a multi-pronged chemical sensor, estimating concentrations of O2 and other key facets of complex natural settings.


Assuntos
Oxigênio , Oxigênio/metabolismo , Oxigênio/análise , Genoma Bacteriano/genética , Filogenia , Anotação de Sequência Molecular
10.
Cell Syst ; 13(1): 29-42.e7, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34653368

RESUMO

For microbiome biology to become a more predictive science, we must identify which descriptive features of microbial communities are reproducible and predictable, which are not, and why. We address this question by experimentally studying parallelism and convergence in microbial community assembly in replicate glucose-limited habitats. Here, we show that the previously observed family-level convergence in these habitats reflects a reproducible metabolic organization, where the ratio of the dominant metabolic groups can be explained from a simple resource-partitioning model. In turn, taxonomic divergence among replicate communities arises from multistability in population dynamics. Multistability can also lead to alternative functional states in closed ecosystems but not in metacommunities. Our findings empirically illustrate how the evolutionary conservation of quantitative metabolic traits, multistability, and the inherent stochasticity of population dynamics, may all conspire to generate the patterns of reproducibility and variability at different levels of organization that are commonplace in microbial community assembly.


Assuntos
Microbiota , Dinâmica Populacional , Reprodutibilidade dos Testes
11.
Nat Ecol Evol ; 3(12): 1715-1724, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31712697

RESUMO

It has been suggested that a deep memory of early life is hidden in the architecture of metabolic networks, whose reactions could have been catalyzed by small molecules or minerals before genetically encoded enzymes. A major challenge in unravelling these early steps is assessing the plausibility of a connected, thermodynamically consistent proto-metabolism under different geochemical conditions, which are still surrounded by high uncertainty. Here we combine network-based algorithms with physico-chemical constraints on chemical reaction networks to systematically show how different combinations of parameters (temperature, pH, redox potential and availability of molecular precursors) could have affected the evolution of a proto-metabolism. Our analysis of possible trajectories indicates that a subset of boundary conditions converges to an organo-sulfur-based proto-metabolic network fuelled by a thioester- and redox-driven variant of the reductive tricarboxylic acid cycle that is capable of producing lipids and keto acids. Surprisingly, environmental sources of fixed nitrogen and low-potential electron donors are not necessary for the earliest phases of biochemical evolution. We use one of these networks to build a steady-state dynamical metabolic model of a protocell, and find that different combinations of carbon sources and electron donors can support the continuous production of a minimal ancient 'biomass' composed of putative early biopolymers and fatty acids.


Assuntos
Ciclo do Ácido Cítrico , Redes e Vias Metabólicas , Biomassa , Carbono , Enxofre
12.
Science ; 361(6401): 469-474, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30072533

RESUMO

A major unresolved question in microbiome research is whether the complex taxonomic architectures observed in surveys of natural communities can be explained and predicted by fundamental, quantitative principles. Bridging theory and experiment is hampered by the multiplicity of ecological processes that simultaneously affect community assembly in natural ecosystems. We addressed this challenge by monitoring the assembly of hundreds of soil- and plant-derived microbiomes in well-controlled minimal synthetic media. Both the community-level function and the coarse-grained taxonomy of the resulting communities are highly predictable and governed by nutrient availability, despite substantial species variability. By generalizing classical ecological models to include widespread nonspecific cross-feeding, we show that these features are all emergent properties of the assembly of large microbial communities, explaining their ubiquity in natural microbiomes.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Consórcios Microbianos , Plantas/microbiologia , Microbiologia do Solo , Bactérias/isolamento & purificação
13.
Cell Rep ; 20(11): 2666-2677, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28903046

RESUMO

Metabolic flux is in part regulated by endogenous small molecules that modulate the catalytic activity of an enzyme, e.g., allosteric inhibition. In contrast to transcriptional regulation of enzymes, technical limitations have hindered the production of a genome-scale atlas of small molecule-enzyme regulatory interactions. Here, we develop a framework leveraging the vast, but fragmented, biochemical literature to reconstruct and analyze the small molecule regulatory network (SMRN) of the model organism Escherichia coli, including the primary metabolite regulators and enzyme targets. Using metabolic control analysis, we prove a fundamental trade-off between regulation and enzymatic activity, and we combine it with metabolomic measurements and the SMRN to make inferences on the sensitivity of enzymes to their regulators. Generalizing the analysis to other organisms, we identify highly conserved regulatory interactions across evolutionarily divergent species, further emphasizing a critical role for small molecule interactions in the maintenance of metabolic homeostasis.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Genoma Bacteriano , Carbono/metabolismo , Metaboloma/genética , Termodinâmica , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA