Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Cell ; 81(24): 5099-5111.e8, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34919820

RESUMO

The SARS-CoV-2 spike protein is a critical component of vaccines and a target for neutralizing monoclonal antibodies (nAbs). Spike is also undergoing immunogenic selection with variants that increase infectivity and partially escape convalescent plasma. Here, we describe Spike Display, a high-throughput platform to rapidly characterize glycosylated spike ectodomains across multiple coronavirus-family proteins. We assayed ∼200 variant SARS-CoV-2 spikes for their expression, ACE2 binding, and recognition by 13 nAbs. An alanine scan of all five N-terminal domain (NTD) loops highlights a public epitope in the N1, N3, and N5 loops recognized by most NTD-binding nAbs. NTD mutations in variants of concern B.1.1.7 (alpha), B.1.351 (beta), B.1.1.28 (gamma), B.1.427/B.1.429 (epsilon), and B.1.617.2 (delta) impact spike expression and escape most NTD-targeting nAbs. Finally, B.1.351 and B.1.1.28 completely escape a potent ACE2 mimic. We anticipate that Spike Display will accelerate antigen design, deep scanning mutagenesis, and antibody epitope mapping for SARS-CoV-2 and other emerging viral threats.


Assuntos
Mamíferos/virologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Epitopos/genética , Epitopos/imunologia , Células HEK293 , Humanos , Mamíferos/imunologia , Ligação Proteica/genética , Ligação Proteica/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
2.
J Biol Chem ; 300(5): 107248, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556082

RESUMO

P2X receptors are a family of ligand gated ion channels found in a range of eukaryotic species including humans but are not naturally present in the yeast Saccharomyces cerevisiae. We demonstrate the first recombinant expression and functional gating of the P2X2 receptor in baker's yeast. We leverage the yeast host for facile genetic screens of mutant P2X2 by performing site saturation mutagenesis at residues of interest, including SNPs implicated in deafness and at residues involved in native binding. Deep mutational analysis and rounds of genetic engineering yield mutant P2X2 F303Y A304W, which has altered ligand selectivity toward the ATP analog AMP-PNP. The F303Y A304W variant shows over 100-fold increased intracellular calcium amplitudes with AMP-PNP compared to the WT receptor and has a much lower desensitization rate. Since AMP-PNP does not naturally activate P2X receptors, the F303Y A304W P2X2 may be a starting point for downstream applications in chemogenetic cellular control. Interestingly, the A304W mutation selectively destabilizes the desensitized state, which may provide a mechanistic basis for receptor opening with suboptimal agonists. The yeast system represents an inexpensive, scalable platform for ion channel characterization and engineering by circumventing the more expensive and time-consuming methodologies involving mammalian hosts.


Assuntos
Receptores Purinérgicos P2X2 , Saccharomyces cerevisiae , Humanos , Substituição de Aminoácidos , Ligantes , Engenharia de Proteínas/métodos , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X2/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Modelos Moleculares , Estrutura Terciária de Proteína , Estrutura Quaternária de Proteína , Homologia Estrutural de Proteína , Mutação
3.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892247

RESUMO

Yeast expression of human G-protein-coupled receptors (GPCRs) can be used as a biosensor platform for the detection of pharmaceuticals. Cannabinoid receptor type 1 (CB1R) is of particular interest, given the cornucopia of natural and synthetic cannabinoids being explored as therapeutics. We show for the first time that engineering the N-terminus of CB1R allows for efficient signal transduction in yeast, and that engineering the sterol composition of the yeast membrane modulates its performance. Using an engineered cannabinoid biosensor, we demonstrate that large libraries of synthetic cannabinoids and terpenes can be quickly screened to elucidate known and novel structure-activity relationships. The biosensor strains offer a ready platform for evaluating the activity of new synthetic cannabinoids, monitoring drugs of abuse, and developing therapeutic molecules.


Assuntos
Técnicas Biossensoriais , Canabinoides , Receptor CB1 de Canabinoide , Saccharomyces cerevisiae , Técnicas Biossensoriais/métodos , Humanos , Canabinoides/química , Canabinoides/farmacologia , Canabinoides/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Transdução de Sinais/efeitos dos fármacos
4.
Am J Pathol ; 190(8): 1680-1690, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32473109

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has spread globally, and no proven treatments are available. Convalescent plasma therapy has been used with varying degrees of success to treat severe microbial infections for >100 years. Patients (n = 25) with severe and/or life-threatening COVID-19 disease were enrolled at the Houston Methodist hospitals from March 28, 2020, to April 14, 2020. Patients were transfused with convalescent plasma, obtained from donors with confirmed severe acute respiratory syndrome coronavirus 2 infection who had recovered. The primary study outcome was safety, and the secondary outcome was clinical status at day 14 after transfusion. Clinical improvement was assessed on the basis of a modified World Health Organization six-point ordinal scale and laboratory parameters. Viral genome sequencing was performed on donor and recipient strains. At day 7 after transfusion with convalescent plasma, nine patients had at least a one-point improvement in clinical scale, and seven of those were discharged. By day 14 after transfusion, 19 (76%) patients had at least a one-point improvement in clinical status, and 11 were discharged. No adverse events as a result of plasma transfusion were observed. Whole genome sequencing data did not identify a strain genotype-disease severity correlation. The data indicate that administration of convalescent plasma is a safe treatment option for those with severe COVID-19 disease.


Assuntos
Infecções por Coronavirus/terapia , Pneumonia Viral/terapia , Adulto , Idoso , Betacoronavirus/genética , COVID-19 , Feminino , Humanos , Imunização Passiva , Aplicação de Novas Drogas em Teste , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Texas , Sequenciamento Completo do Genoma , Adulto Jovem , Soroterapia para COVID-19
5.
Mol Syst Biol ; 16(7): e9723, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32692486

RESUMO

The fast-paced field of synthetic biology is fundamentally changing the global biosecurity framework. Current biosecurity regulations and strategies are based on previous governance paradigms for pathogen-oriented security, recombinant DNA research, and broader concerns related to genetically modified organisms (GMOs). Many scholarly discussions and biosecurity practitioners are therefore concerned that synthetic biology outpaces established biosafety and biosecurity measures to prevent deliberate and malicious or inadvertent and accidental misuse of synthetic biology's processes or products. This commentary proposes three strategies to improve biosecurity: Security must be treated as an investment in the future applicability of the technology; social scientists and policy makers should be engaged early in technology development and forecasting; and coordination among global stakeholders is necessary to ensure acceptable levels of risk.


Assuntos
Contenção de Riscos Biológicos/métodos , Desenvolvimento Industrial , Formulação de Políticas , Biologia Sintética/métodos , Contenção de Riscos Biológicos/normas , DNA Recombinante/genética , DNA Recombinante/metabolismo , DNA Recombinante/farmacologia , Humanos , Internacionalidade , Medicina , Organismos Geneticamente Modificados , Fatores de Risco , Ciências Sociais , Virulência/efeitos dos fármacos , Virulência/genética
6.
Mol Pharm ; 14(10): 3269-3280, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28870080

RESUMO

Understanding protein stability is central to combatting protein aggregation diseases and developing new protein therapeutics. At the high concentrations often present in biological systems, purified proteins can exhibit undesirable high solution viscosities and poor solubilities mediated by short-range electrostatic and hydrophobic protein-protein interactions. The interplay between protein amino acid sequence, protein structure, and solvent conditions to minimize protein-protein interactions is key to designing well-behaved pharmaceutical proteins. However, theoretical approaches have yet to yield a general framework to address these problems. Here, we analyzed the high concentration behavior of superfolder GFP (sfGFP) and two supercharged sfGFP variants engineered to have formal charges of -18 or +15. Under low cosolute conditions, sfGFP and the -18 variant formed a gel or phase separated at ∼10 mg/mL. Under conditions that screen surface charges, including formulations with high histidine or high NaCl concentrations, all three variants attained concentrations up to 250 mg/mL with moderate viscosities. Moreover, all three variants exhibited very similar viscosity-concentration profiles over this range. This effect was not mimicked by high sugar concentrations that exert excluded-volume effects without shielding charge. Collectively, these data demonstrate that charge shielding neutralizes not only long-range electrostatic interactions but also, surprisingly, short-range electrostatic effects due to surface charge anisotropy. This work shows that supercharged sfGFP behavior under high ionic strength is largely determined by particle geometry, a conclusion that is supported by colloid models and may be applicable to pharmaceutically relevant proteins.


Assuntos
Proteínas de Fluorescência Verde/química , Agregação Patológica de Proteínas/prevenção & controle , Estabilidade Proteica , Anisotropia , Interações Hidrofóbicas e Hidrofílicas , Concentração Osmolar , Conformação Proteica , Solubilidade , Eletricidade Estática , Viscosidade
7.
Angew Chem Int Ed Engl ; 56(4): 992-996, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-27990727

RESUMO

The detection of nucleic acid biomarkers for point-of-care (POC) diagnostics is currently limited by technical complexity, cost, and time constraints. To overcome these shortcomings, we have combined loop-mediated isothermal amplification (LAMP), programmable toehold-mediated strand-exchange signal transduction, and standard pregnancy test strips. The incorporation of an engineered hCG-SNAP fusion reporter protein (human chorionic gonadotropin-O6 -alkylguanine-DNA alkyltransferase) led to LAMP-to-hCG signal transduction on low-cost, commercially available pregnancy test strips. Our assay reliably detected as few as 20 copies of Ebola virus templates in both human serum and saliva and could be adapted to distinguish a common melanoma-associated SNP allele (BRAF V600E) from the wild-type sequence. The methods described are completely generalizable to many nucleic acid biomarkers, and could be adapted to provide POC diagnostics for a range of pathogens.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos/análise , Testes de Gravidez , Biomarcadores/análise , Feminino , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Gravidez
8.
Commun Biol ; 6(1): 1250, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082099

RESUMO

The ongoing evolution of SARS-CoV-2 into more easily transmissible and infectious variants has provided unprecedented insight into mutations enabling immune escape. Understanding how these mutations affect the dynamics of antibody-antigen interactions is crucial to the development of broadly protective antibodies and vaccines. Here we report the characterization of a potent neutralizing antibody (N3-1) identified from a COVID-19 patient during the first disease wave. Cryogenic electron microscopy revealed a quaternary binding mode that enables direct interactions with all three receptor-binding domains of the spike protein trimer, resulting in extraordinary avidity and potent neutralization of all major variants of concern until the emergence of Omicron. Structure-based rational design of N3-1 mutants improved binding to all Omicron variants but only partially restored neutralization of the conformationally distinct Omicron BA.1. This study provides new insights into immune evasion through changes in spike protein dynamics and highlights considerations for future conformationally biased multivalent vaccine designs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes
9.
Plant Methods ; 18(1): 42, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351174

RESUMO

BACKGROUND: The construction and application of synthetic genetic circuits is frequently improved if gene expression can be orthogonally controlled, relative to the host. In plants, orthogonality can be achieved via the use of CRISPR-based transcription factors that are programmed to act on natural or synthetic promoters. The construction of complex gene circuits can require multiple, orthogonal regulatory interactions, and this in turn requires that the full programmability of CRISPR elements be adapted to non-natural and non-standard promoters that have few constraints on their design. Therefore, we have developed synthetic promoter elements in which regions upstream of the minimal 35S CaMV promoter are designed from scratch to interact via programmed gRNAs with dCas9 fusions that allow activation of gene expression. RESULTS: A panel of three, mutually orthogonal promoters that can be acted on by artificial gRNAs bound by CRISPR regulators were designed. Guide RNA expression targeting these promoters was in turn controlled by either Pol III (U6) or ethylene-inducible Pol II promoters, implementing for the first time a fully artificial Orthogonal Control System (OCS). Following demonstration of the complete orthogonality of the designs, the OCS was tied to cellular metabolism by putting gRNA expression under the control of an endogenous plant signaling molecule, ethylene. The ability to form complex circuitry was demonstrated via the ethylene-driven, ratiometric expression of fluorescent proteins in single plants. CONCLUSIONS: The design of synthetic promoters is highly generalizable to large tracts of sequence space, allowing Orthogonal Control Systems of increasing complexity to potentially be generated at will. The ability to tie in several different basal features of plant molecular biology (Pol II and Pol III promoters, ethylene regulation) to the OCS demonstrates multiple opportunities for engineering at the system level. Moreover, given the fungibility of the core 35S CaMV promoter elements, the derived synthetic promoters can potentially be utilized across a variety of plant species.

10.
Nat Commun ; 13(1): 2882, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610225

RESUMO

The yeast Saccharomyces cerevisiae is powerful for studying human G protein-coupled receptors as they can be coupled to its mating pathway. However, some receptors, including the mu opioid receptor, are non-functional, which may be due to the presence of the fungal sterol ergosterol instead of cholesterol. Here we engineer yeast to produce cholesterol and introduce diverse mu, delta, and kappa opioid receptors to create sensitive opioid biosensors that recapitulate agonist binding profiles and antagonist inhibition. Additionally, human mu opioid receptor variants, including those with clinical relevance, largely display expected phenotypes. By testing mu opioid receptor-based biosensors with systematically adjusted cholesterol biosynthetic intermediates, we relate sterol profiles to biosensor sensitivity. Finally, we apply sterol-modified backgrounds to other human receptors revealing sterol influence in SSTR5, 5-HTR4, FPR1, and NPY1R signaling. This work provides a platform for generating human G protein-coupled receptor-based biosensors, facilitating receptor deorphanization and high-throughput screening of receptors and effectors.


Assuntos
Fitosteróis , Saccharomyces cerevisiae , Colesterol/metabolismo , Humanos , Fitosteróis/metabolismo , Receptores Opioides/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/genética , Receptores Opioides mu/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA