Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 12615, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31471545

RESUMO

In 2017 Ontario experienced the largest mumps outbreak in the province in 8 years, at a time when multiple outbreaks were occurring across North America. Of 259 reported cases, 143 occurred in Toronto, primarily among young adults. Routine genotyping of the small hydrophobic gene indicated that the outbreak was due to mumps virus genotype G. We performed a retrospective study of whole genome sequencing of 26 mumps virus isolates from early in the outbreak, using a tiling amplicon method. Results indicated that two of the cases were genetically divergent, with the remaining 24 cases belonging to two major clades and one minor clade. Phylogeographic analysis confirmed circulation of virus from each clade between Toronto and other regions in Ontario. Comparison with other genotype G strains from North America suggested that the presence of co-circulating major clades may have been due to separate importation events from outbreaks in the United States. A transmission network analysis performed with the software program TransPhylo was compared with previously collected epidemiological data. The transmission tree correlated with known epidemiological links between nine patients and identified new potential clusters with no known epidemiological links.


Assuntos
Genoma Viral/genética , Vírus da Caxumba/genética , Caxumba/genética , Filogenia , Surtos de Doenças , Genótipo , Humanos , Caxumba/epidemiologia , Caxumba/virologia , Vírus da Caxumba/patogenicidade , Ontário/epidemiologia , RNA Viral/genética , Estados Unidos/epidemiologia , Sequenciamento Completo do Genoma
2.
Curr Infect Dis Rep ; 20(10): 37, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30069735

RESUMO

PURPOSE OF REVIEW: Zoonotic influenza viruses are those that cross the animal-human barrier and can cause disease in humans, manifesting from minor respiratory illnesses to multiorgan dysfunction. They have also been implicated in the causation of deadly pandemics in recent history. The increasing incidence of infections caused by these viruses worldwide has necessitated focused attention to improve both diagnostic as well as treatment modalities. In this first part of a two-part review, we describe the structure of zoonotic influenza viruses, the relationship between mutation and pandemic capacity, pathogenesis of infection, and also discuss history and epidemiology. RECENT FINDINGS: We are currently witnessing the fifth and the largest wave of the avian influenza A(H7N9) epidemic. Also in circulation are a number of other zoonotic influenza viruses, including avian influenza A(H5N1) and A(H5N6); avian influenza A(H7N2); and swine influenza A(H1N1)v, A(H1N2)v, and A(H3N2)v viruses. Most recently, the first human case of avian influenza A(H7N4) infection has been documented. By understanding the virology and epidemiology of emerging zoonotic influenzas, we are better prepared to face a new pandemic. However, continued effort is warranted to build on this knowledge in order to efficiently combat the constant threat posed by the zoonotic influenza viruses.

3.
Curr Infect Dis Rep ; 20(10): 38, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30069787

RESUMO

PURPOSE OF REVIEW: Zoonotic influenza viruses are those influenza viruses that cross the animal-human barrier and can cause disease in humans, manifesting from minor respiratory illnesses to multiorgan dysfunction. The increasing incidence of infections caused by these viruses worldwide has necessitated focused attention to improve both diagnostic as well as treatment modalities. In this second part of a two-part review, we discuss the clinical features, diagnostic modalities, and treatment of zoonotic influenza, and provide an overview of prevention strategies. RECENT FINDINGS: Illnesses caused by novel reassortant avian influenza viruses continue to be detected and described; most recently, a human case of avian influenza A(H7N4) has been described from China. We continue to witness increasing rates of A(H7N9) infections, with the latest (fifth) wave, from late 2016 to 2017, being the largest to date. The case fatality rate for A(H7N9) and A(H5N1) infections among humans is much higher than that of seasonal influenza infections. Since the emergence of the A(H1N1) 2009 pandemic, and subsequently A(H7N9), testing and surveillance for novel influenzas have become more effective. Various newer treatment options, including peramivir, favipiravir (T-705), and DAS181, and human or murine monoclonal antibodies have been evaluated in vitro and in animal models. Armed with robust diagnostic modalities, antiviral medications, vaccines, and advanced surveillance systems, we are today better prepared to face a new influenza pandemic and to limit the burden of zoonotic influenza than ever before. Sustained efforts and robust research are necessary to efficiently deal with the highly mutagenic zoonotic influenza viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA