Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 20(3): 629-639, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38163997

RESUMO

The application of hydrogels in an underwater environment is limited due to their swelling behavior and the existence of a hydration layer. In this study, a hydrogel based on poly(sulfobetaine methacrylate) (PSBMA), tannic acid (TA) and montmorillonite (MMT) was prepared with excellent anti-swelling properties and underwater self-adhesion properties. The PSBMA hydrogel has excellent anti-swelling properties due to the strong electrostatic interaction between charged groups of PSBMA chains. Inspired by marine mussels, tannic acid modified montmorillonite (TA@MMT) was introduced. Natural polyphenol tannic acid, as a catechol donor, provides a large number of catechol groups for hydrogels. Montmorillonite acts as the physical cross-linking point of PSBMA chains through electrostatic interaction to improve the cohesion of the hydrogel. By combining the adhesion mechanism of zwitterions and catechol, the hydrogel maintains adhesion in air and underwater environments. In addition, a strain sensor was prepared based on the PSBMA/TA@MMT hydrogel, which can closely fit the human skin and stably monitor different movements in air and in underwater environments. Through a Bluetooth communication system, long-distance information transmission can be achieved. Therefore, the PSBMA/TA@MMT hydrogel broadens the application prospect of wearable devices in the underwater environment.

2.
Soft Matter ; 18(4): 726-734, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34874397

RESUMO

Packing structures of granular cylinders with the aspect ratio close to one have been reconstructed with the help of magnetic resonance imaging techniques. By controlling the container boundary conditions and preparation protocols, a structural transformation from a disordered liquid-like state to an orientationally ordered state with cubatic symmetry at a high packing fraction is observed. This ordering process is accompanied by the formation of more faceted contacts, which lower the elastic energy between jammed granular particles to drive the transformation. With the help of Edwards' volume ensemble theory, this granular structural transformation is explained using a phenomenological thermodynamic model and a self-consistent mean-field statistical mechanical model. Both models predict a sharp but continuous change of order parameter when the effective granular temperature is lowered. The intrinsic difference and connection between this granular structural transformation and the entropy-driven phase transition of conventional thermal hard-particle systems are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA