Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238647

RESUMO

Protein trafficking is altered when normal cells acquire a tumor phenotype. A key subcellular compartment in regulating protein trafficking is the Golgi apparatus, but its role in carcinogenesis is still not well defined. Golgi phosphoprotein 3 (GOLPH3), a peripheral membrane protein mostly localized at the trans-Golgi network, is overexpressed in several tumor types including glioblastoma multiforme (GBM), the most lethal primary brain tumor. Moreover, GOLPH3 is currently considered an oncoprotein, however its precise function in GBM is not fully understood. Here, we analyzed in T98G cells of GBM, which express high levels of epidermal growth factor receptor (EGFR), the effect of stable RNAi-mediated knockdown of GOLPH3. We found that silencing GOLPH3 caused a significant reduction in the proliferation of T98G cells and an unexpected increase in total EGFR levels, even at the cell surface, which was however less prone to ligand-induced autophosphorylation. Furthermore, silencing GOLPH3 decreased EGFR sialylation and fucosylation, which correlated with delayed ligand-induced EGFR downregulation and its accumulation at endo-lysosomal compartments. Finally, we found that EGF failed at promoting EGFR ubiquitylation when the levels of GOLPH3 were reduced. Altogether, our results show that GOLPH3 in T98G cells regulates the endocytic trafficking and activation of EGFR likely by affecting its extent of glycosylation and ubiquitylation.


Assuntos
Carcinogênese/genética , Glioblastoma/genética , Proteínas de Membrana/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Glicosilação , Complexo de Golgi/genética , Humanos , Proteínas de Membrana/antagonistas & inibidores , Transporte Proteico/genética , Ubiquitinação/genética , Rede trans-Golgi/genética
2.
FASEB J ; 31(6): 2446-2459, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28254759

RESUMO

Brain regions affected by Alzheimer disease (AD) display well-recognized early neuropathologic features in the endolysosomal and autophagy systems of neurons, including enlargement of endosomal compartments, progressive accumulation of autophagic vacuoles, and lysosomal dysfunction. Although the primary causes of these disturbances are still under investigation, a growing body of evidence suggests that the amyloid precursor protein (APP) intracellular C-terminal fragment ß (C99), generated by cleavage of APP by ß-site APP cleaving enzyme 1 (BACE-1), is the primary cause of the endosome enlargement in AD and the earliest initiator of synaptic plasticity and long-term memory impairment. The aim of the present study was to evaluate the possible relationship between the endolysosomal degradation pathway and autophagy on the proteolytic processing and turnover of C99. We found that pharmacologic treatments that either inhibit autophagosome formation or block the fusion of autophagosomes to endolysosomal compartments caused an increase in C99 levels. We also found that inhibition of autophagosome formation by depletion of Atg5 led to higher levels of C99 and to its massive accumulation in the lumen of enlarged perinuclear, lysosomal-associated membrane protein 1 (LAMP1)-positive organelles. In contrast, activation of autophagosome formation, either by starvation or by inhibition of the mammalian target of rapamycin, enhanced lysosomal clearance of C99. Altogether, our results indicate that autophagosomes are key organelles to help avoid C99 accumulation preventing its deleterious effects.-González, A. E., Muñoz, V. C., Cavieres, V. A., Bustamante, H. A., Cornejo, V.-H., Januário, Y. C., González, I., Hetz, C., daSilva, L. L., Rojas-Fernández, A., Hay, R. T., Mardones, G. A., Burgos, P. V. Autophagosomes cooperate in the degradation of intracellular C-terminal fragments of the amyloid precursor protein via the MVB/lysosomal pathway.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Autofagossomos/fisiologia , Lisossomos/fisiologia , Corpos Multivesiculares/fisiologia , Precursor de Proteína beta-Amiloide/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Regulação da Expressão Gênica/fisiologia , Inativação Gênica , Humanos , Naftiridinas/farmacologia , Neuroglia , RNA Interferente Pequeno , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Front Cell Dev Biol ; 10: 743287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309917

RESUMO

Macroautophagy and the ubiquitin proteasome system work as an interconnected network in the maintenance of cellular homeostasis. Indeed, efficient activation of macroautophagy upon nutritional deprivation is sustained by degradation of preexisting proteins by the proteasome. However, the specific substrates that are degraded by the proteasome in order to activate macroautophagy are currently unknown. By quantitative proteomic analysis we identified several proteins downregulated in response to starvation independently of ATG5 expression. Among them, the most significant was HERPUD1, an ER membrane protein with low expression and known to be degraded by the proteasome under normal conditions. Contrary, under ER stress, levels of HERPUD1 increased rapidly due to a blockage in its proteasomal degradation. Thus, we explored whether HERPUD1 stability could work as a negative regulator of autophagy. In this work, we expressed a version of HERPUD1 with its ubiquitin-like domain (UBL) deleted, which is known to be crucial for its proteasome degradation. In comparison to HERPUD1-WT, we found the UBL-deleted version caused a negative role on basal and induced macroautophagy. Unexpectedly, we found stabilized HERPUD1 promotes ER remodeling independent of unfolded protein response activation observing an increase in stacked-tubular structures resembling previously described tubular ER rearrangements. Importantly, a phosphomimetic S59D mutation within the UBL mimics the phenotype observed with the UBL-deleted version including an increase in HERPUD1 stability and ER remodeling together with a negative role on autophagy. Moreover, we found UBL-deleted version and HERPUD1-S59D trigger an increase in cellular size, whereas HERPUD1-S59D also causes an increased in nuclear size. Interestingly, ER remodeling by the deletion of the UBL and the phosphomimetic S59D version led to an increase in the number and function of lysosomes. In addition, the UBL-deleted version and phosphomimetic S59D version established a tight ER-lysosomal network with the presence of extended patches of ER-lysosomal membrane-contact sites condition that reveals an increase of cell survival under stress conditions. Altogether, we propose stabilized HERPUD1 downregulates macroautophagy favoring instead a closed interplay between the ER and lysosomes with consequences in drug-cell stress survival.

4.
Cells ; 9(3)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210007

RESUMO

Ubiquitination regulates several biological processes, however the role of specific members of the ubiquitinome on intracellular membrane trafficking is not yet fully understood. Here, we search for ubiquitin-related genes implicated in protein membrane trafficking performing a High-Content siRNA Screening including 1187 genes of the human "ubiquitinome" using amyloid precursor protein (APP) as a reporter. We identified the deubiquitinating enzyme PSMD14, a subunit of the 19S regulatory particle of the proteasome, specific for K63-Ub chains in cells, as a novel regulator of Golgi-to-endoplasmic reticulum (ER) retrograde transport. Silencing or pharmacological inhibition of PSMD14 with Capzimin (CZM) caused a robust increase in APP levels at the Golgi apparatus and the swelling of this organelle. We showed that this phenotype is the result of rapid inhibition of Golgi-to-ER retrograde transport, a pathway implicated in the early steps of the autophagosomal formation. Indeed, we observed that inhibition of PSMD14 with CZM acts as a potent blocker of macroautophagy by a mechanism related to the retention of Atg9A and Rab1A at the Golgi apparatus. As pharmacological inhibition of the proteolytic core of the 20S proteasome did not recapitulate these effects, we concluded that PSMD14, and the K63-Ub chains, act as a crucial regulatory factor for macroautophagy by controlling Golgi-to-ER retrograde transport.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Macroautofagia , Complexo de Endopeptidases do Proteassoma/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Modelos Biológicos , Fenótipo , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Transativadores/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo
5.
PLoS One ; 14(2): e0212321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30779783

RESUMO

Golgi phosphoprotein 3 (GOLPH3) is a conserved protein of the Golgi apparatus that in humans has been implicated in tumorigenesis. However, the precise function of GOLPH3 in malignant transformation is still unknown. Nevertheless, clinicopathological data shows that in more than a dozen kinds of cancer, including gliomas, GOLPH3 could be found overexpressed, which correlates with poor prognosis. Experimental data shows that overexpression of GOLPH3 leads to transformation of primary cells and to tumor growth enhancement. Conversely, the knocking down of GOLPH3 in GOLPH3-overexpressing tumor cells reduces tumorigenic features, such as cell proliferation and cell migration and invasion. The cumulative evidence indicate that GOLPH3 is an oncoprotein that promotes tumorigenicity by a mechanism that impact at different levels in different types of cells, including the sorting of Golgi glycosyltransferases, signaling pathways, and the actin cytoskeleton. How GOLPH3 connects mechanistically these processes has not been determined yet. Further studies are important to have a more complete understanding of the role of GOLPH3 as oncoprotein. Given the genetic diversity in cancer, a still outstanding aspect is how in this inherent heterogeneity GOLPH3 could possibly exert its oncogenic function. We have aimed to evaluate the contribution of GOLPH3 overexpression in the malignant phenotype of different types of tumor cells. Here, we analyzed the effect on cell migration that resulted from stable, RNAi-mediated knocking down of GOLPH3 in T98G cells of glioblastoma multiforme, a human glioma cell line with unique features. We found that the reduction of GOLPH3 levels produced dramatic changes in cell morphology, involving rearrangements of the actin cytoskeleton and reduction in the number and dynamics of focal adhesions. These effects correlated with decreased cell migration and invasion due to affected persistence and directionality of cell motility. Moreover, the knocking down of GOLPH3 also caused a reduction in autoactivation of focal adhesion kinase (FAK), a cytoplasmic tyrosine kinase that regulates focal adhesions. Our data support a model in which GOLPH3 in T98G cells promotes cell migration by stimulating the activity of FAK.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/fisiologia , Proteínas de Membrana/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo
6.
Front Cell Neurosci ; 12: 126, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867359

RESUMO

Alzheimer's disease (AD) is the most common cause of age-related dementia leading to severe irreversible cognitive decline and massive neurodegeneration. While therapeutic approaches for managing symptoms are available, AD currently has no cure. AD associates with a progressive decline of the two major catabolic pathways of eukaryotic cells-the autophagy-lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS)-that contributes to the accumulation of harmful molecules implicated in synaptic plasticity and long-term memory impairment. One protein recently highlighted as the earliest initiator of these disturbances is the amyloid precursor protein (APP) intracellular C-terminal membrane fragment ß (CTFß), a key toxic agent with deleterious effects on neuronal function that has become an important pathogenic factor for AD and a potential biomarker for AD patients. This review focuses on the involvement of regulatory molecules and specific post-translational modifications (PTMs) that operate in the UPS and ALP to control a single proteostasis network to achieve protein balance. We discuss how these aspects can contribute to the development of novel strategies to strengthen the balance of key pathogenic proteins associated with AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA