Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; 69(6): e12947, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36070203

RESUMO

Malaria parasites are diheteroxenous, requiring two hosts-a vertebrate and a mosquito-to complete their life cycle. Mosquitoes are the definitive host where malaria parasite sex occurs, and vertebrates are the intermediate host, supporting asexual amplification and more significant geographic spread. In this review, we examine the roles of a single malaria parasite compartment, the relict plastid known as the apicoplast, at each life cycle stage. We focus mainly on two malaria parasite species-Plasmodium falciparum and P. berghei-comparing the changing, yet ever crucial, roles of their apicoplasts.


Assuntos
Apicoplastos , Malária , Parasitos , Humanos , Animais , Roedores , Plasmodium falciparum/genética , Estágios do Ciclo de Vida , Proteínas de Protozoários
2.
Gynecol Oncol ; 160(1): 134-139, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33162177

RESUMO

PURPOSE/OBJECTIVES: High dose rate (HDR) interstitial brachytherapy (ISBT) boost is integral for definitive radiation treatment of primary vaginal cancer. Technological advances with CT or MRI guidance provide improved precision and ability to treat more extensively invasive tumors over historical techniques, but reported experience is limited. We sought to provide updated outcome and toxicity data for women with primary vaginal cancer undergoing treatment with a modern ISBT technique. MATERIAL/METHODS: Databases of primary vaginal carcinoma patients treated at two Canadian academic cancer institutions were combined including patient, tumor and treatment characteristics, and survival outcomes and toxicity data. Descriptive statistics, survival estimates based on the Kaplan-Meier method, and univariable/multivariable Cox proportional hazards regression analyses are reported. RESULTS: Between 2002 and 2017, 67 women with primary vaginal cancer were treated with 3D HDR ISBT. FIGO stage distribution was I (22.4%), II (50.8%), III (17.9%), IVa (9.0%). All patients received external beam radiotherapy and HDR ISBT of 500-750 cGy per fraction over 2-4 fractions. Median follow-up was 2.68 years (95% confidence interval: 2.04-6.04). Cumulative rate of grade 3-4 genitourinary/gastrointestinal toxicity was 10.4%. Four patients developed vaginal fistula. Progression-free survival at 2 and 3 years was 73.5% and 66.4% for all patients, 78.3% and 75.0% for stage I-II and 61.6% and 46.2% for stage III-IVa, respectively (log-rank p = 0.252). CONCLUSIONS: Use of 3D image-guided HDR ISBT boost was safe and resulted in improved survival outcomes compared to historical rates in this series of primary vaginal cancer patients. Prospective study is warranted to better define clinical and dosimetric predictors of local control.


Assuntos
Braquiterapia/métodos , Radioterapia Guiada por Imagem/métodos , Neoplasias Vaginais/diagnóstico por imagem , Neoplasias Vaginais/radioterapia , Idoso , Feminino , Humanos , Imageamento Tridimensional/métodos , Metástase Linfática , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos , Neoplasias Vaginais/patologia
3.
Bioorg Chem ; 115: 105244, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34452759

RESUMO

Malaria is a devastating parasitic disease caused by parasites from the genus Plasmodium. Therapeutic resistance has been reported against all clinically available antimalarials, threatening our ability to control the disease and therefore there is an ongoing need for the development of novel antimalarials. Towards this goal, we identified the 2-(N-phenyl carboxamide) triazolopyrimidine class from a high throughput screen of the Janssen Jumpstarter library against the asexual stages of the P. falciparum parasite. Here we describe the structure activity relationship of the identified class and the optimisation of asexual stage activity while maintaining selectivity against the human HepG2 cell line. The most potent analogues from this study were shown to exhibit equipotent activity against P. falciparum multidrug resistant strains and P. knowlesi asexual parasites. Asexual stage phenotyping studies determined the triazolopyrimidine class arrests parasites at the trophozoite stage, but it is likely these parasites are still metabolically active until the second asexual cycle, and thus have a moderate to slow onset of action. Non-NADPH dependent degradation of the central carboxamide and low aqueous solubility was observed in in vitro ADME profiling. A significant challenge remains to correct these liabilities for further advancement of the 2-(N-phenyl carboxamide) triazolopyrimidine scaffold as a potential moderate to slow acting partner in a curative or prophylactic antimalarial treatment.


Assuntos
Antimaláricos/farmacologia , Eritrócitos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Purinas/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Eritrócitos/parasitologia , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Purinas/síntese química , Purinas/química , Relação Estrutura-Atividade
4.
Proc Natl Acad Sci U S A ; 115(11): E2604-E2613, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483266

RESUMO

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme that is the target of several classes of herbicides. Malaria parasites contain a plant-like ACC, and this is the only protein predicted to be biotinylated in the parasite. We found that ACC is expressed in the apicoplast organelle in liver- and blood-stage malaria parasites; however, it is activated through biotinylation only in the liver stages. Consistent with this observation, deletion of the biotin ligase responsible for ACC biotinylation does not impede blood-stage growth, but results in late liver-stage developmental defects. Biotin depletion increases the severity of the developmental defects, demonstrating that parasite and host biotin metabolism are required for normal liver-stage progression. This finding may link the development of liver-stage malaria parasites to the nutritional status of the host, as neither the parasite nor the human host can synthesize biotin.


Assuntos
Biotina/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Fígado/parasitologia , Malária/metabolismo , Plasmodium/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Apicoplastos/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Células Hep G2 , Humanos , Fígado/metabolismo , Malária/parasitologia , Camundongos , Proteínas de Protozoários/metabolismo
5.
BMC Biol ; 18(1): 133, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993629

RESUMO

BACKGROUND: Resistance to front-line antimalarials (artemisinin combination therapies) is spreading, and development of new drug treatment strategies to rapidly kill Plasmodium spp. malaria parasites is urgently needed. Azithromycin is a clinically used macrolide antibiotic proposed as a partner drug for combination therapy in malaria, which has also been tested as monotherapy. However, its slow-killing 'delayed-death' activity against the parasite's apicoplast organelle and suboptimal activity as monotherapy limit its application as a potential malaria treatment. Here, we explore a panel of azithromycin analogues and demonstrate that chemical modifications can be used to greatly improve the speed and potency of antimalarial action. RESULTS: Investigation of 84 azithromycin analogues revealed nanomolar quick-killing potency directed against the very earliest stage of parasite development within red blood cells. Indeed, the best analogue exhibited 1600-fold higher potency than azithromycin with less than 48 hrs treatment in vitro. Analogues were effective against zoonotic Plasmodium knowlesi malaria parasites and against both multi-drug and artemisinin-resistant Plasmodium falciparum lines. Metabolomic profiles of azithromycin analogue-treated parasites suggested activity in the parasite food vacuole and mitochondria were disrupted. Moreover, unlike the food vacuole-targeting drug chloroquine, azithromycin and analogues were active across blood-stage development, including merozoite invasion, suggesting that these macrolides have a multi-factorial mechanism of quick-killing activity. The positioning of functional groups added to azithromycin and its quick-killing analogues altered their activity against bacterial-like ribosomes but had minimal change on 'quick-killing' activity. Apicoplast minus parasites remained susceptible to both azithromycin and its analogues, further demonstrating that quick-killing is independent of apicoplast-targeting, delayed-death activity. CONCLUSION: We show that azithromycin and analogues can rapidly kill malaria parasite asexual blood stages via a fast action mechanism. Development of azithromycin and analogues as antimalarials offers the possibility of targeting parasites through both a quick-killing and delayed-death mechanism of action in a single, multifactorial chemotype.


Assuntos
Antimaláricos/farmacologia , Azitromicina/análogos & derivados , Azitromicina/farmacologia , Malária/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Malária Falciparum/prevenção & controle , Malária Vivax/prevenção & controle
6.
PLoS Pathog ; 13(6): e1006396, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28617870

RESUMO

The combination of drug resistance, lack of an effective vaccine, and ongoing conflict and poverty means that malaria remains a major global health crisis. Understanding metabolic pathways at all parasite life stages is important in prioritising and targeting novel anti-parasitic compounds. The unusual heme synthesis pathway of the rodent malaria parasite, Plasmodium berghei, requires eight enzymes distributed across the mitochondrion, apicoplast and cytoplasm. Deletion of the ferrochelatase (FC) gene, the final enzyme in the pathway, confirms that heme synthesis is not essential in the red blood cell stages of the life cycle but is required to complete oocyst development in mosquitoes. The lethality of FC deletions in the mosquito stage makes it difficult to study the impact of these mutations in the subsequent liver stage. To overcome this, we combined locus-specific fluorophore expression with a genetic complementation approach to generate viable, heterozygous oocysts able to produce a mix of FC expressing and FC deficient sporozoites. These sporozoites show normal motility and can invade liver cells, where FC deficient parasites can be distinguished by fluorescence and phenotyped. Parasites lacking FC exhibit a severe growth defect within liver cells, with development failure detectable in the early to mid stages of liver development in vitro. FC deficient parasites could not complete liver stage development in vitro nor infect naïve mice, confirming liver stage arrest. These results validate the heme pathway as a potential target for prophylactic drugs targeting liver stage parasites. In addition, we demonstrate that our simple genetic approach can extend the phenotyping window beyond the insect stages, opening considerable scope for straightforward reverse genetic analysis of genes that are dispensable in blood stages but essential for completing mosquito development.


Assuntos
Anopheles/parasitologia , Teste de Complementação Genética/métodos , Heme/biossíntese , Fígado/parasitologia , Malária/parasitologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Anopheles/crescimento & desenvolvimento , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Feminino , Humanos , Estágios do Ciclo de Vida , Fígado/metabolismo , Masculino , Camundongos , Plasmodium berghei/enzimologia , Plasmodium berghei/genética , Proteínas de Protozoários/genética
7.
Cell Microbiol ; 20(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28902970

RESUMO

The malaria-causing parasite, Plasmodium, contains a unique non-photosynthetic plastid known as the apicoplast. The apicoplast is an essential organelle bound by four membranes. Although membrane transporters are attractive drug targets, only two transporters have been characterised in the malaria parasite apicoplast membranes. We selected 27 candidate apicoplast membrane proteins, 20 of which are annotated as putative membrane transporters, and performed a genetic screen in Plasmodium berghei to determine blood stage essentiality and subcellular localisation. Eight apparently essential blood stage genes were identified, three of which were apicoplast-localised: PbANKA_0614600 (DMT2), PbANKA_0401200 (ABCB4), and PbANKA_0505500. Nineteen candidates could be deleted at the blood stage, four of which were apicoplast-localised. Interestingly, three apicoplast-localised candidates lack a canonical apicoplast targeting signal but do contain conserved N-terminal tyrosines with likely roles in targeting. An inducible knockdown of an essential apicoplast putative membrane transporter, PfDMT2, was only viable when supplemented with isopentenyl diphosphate. Knockdown of PfDMT2 resulted in loss of the apicoplast, identifying PfDMT2 as a crucial apicoplast putative membrane transporter and a candidate for therapeutic intervention.


Assuntos
Apicoplastos/metabolismo , Proteínas de Membrana Transportadoras/genética , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Animais , Apicoplastos/genética , Transporte Biológico/genética , Técnicas de Inativação de Genes , Hemiterpenos/biossíntese , Humanos , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Compostos Organofosforados , Proteínas de Protozoários/metabolismo
8.
Cell Microbiol ; 19(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27324409

RESUMO

Malaria parasites can synthesize fatty acids via a type II fatty acid synthesis (FASII) pathway located in their apicoplast. The FASII pathway has been pursued as an anti-malarial drug target, but surprisingly little is known about its role in lipid metabolism. Here we characterize the apicoplast glycerol 3-phosphate acyltransferase that acts immediately downstream of FASII in human (Plasmodium falciparum) and rodent (Plasmodium berghei) malaria parasites and investigate how this enzyme contributes to incorporating FASII fatty acids into precursors for membrane lipid synthesis. Apicoplast targeting of the P. falciparum and P. berghei enzymes are confirmed by fusion of the N-terminal targeting sequence to GFP and 3' tagging of the full length protein. Activity of the P. falciparum enzyme is demonstrated by complementation in mutant bacteria, and critical residues in the putative active site identified by site-directed mutagenesis. Genetic disruption of the P. falciparum enzyme demonstrates it is dispensable in blood stage parasites, even in conditions known to induce FASII activity. Disruption of the P. berghei enzyme demonstrates it is dispensable in blood and mosquito stage parasites, and only essential for development in the late liver stage, consistent with the requirement for FASII in rodent malaria models. However, the P. berghei mutant liver stage phenotype is found to only partially phenocopy loss of FASII, suggesting newly made fatty acids can take multiple pathways out of the apicoplast and so giving new insight into the role of FASII and apicoplast glycerol 3-phosphate acyltransferase in malaria parasites.


Assuntos
Apicoplastos/metabolismo , Ácidos Graxos/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo , Apicoplastos/enzimologia , Bactérias/genética , Bactérias/metabolismo , Análise Mutacional de DNA , Técnicas de Inativação de Genes , Teste de Complementação Genética , Plasmodium berghei/enzimologia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Transporte Proteico
9.
Proc Natl Acad Sci U S A ; 112(33): 10216-23, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25831536

RESUMO

Mitochondrial ATP synthase is driven by chemiosmotic oxidation of pyruvate derived from glycolysis. Blood-stage malaria parasites eschew chemiosmosis, instead relying almost solely on glycolysis for their ATP generation, which begs the question of whether mitochondrial ATP synthase is necessary during the blood stage of the parasite life cycle. We knocked out the mitochondrial ATP synthase ß subunit gene in the rodent malaria parasite, Plasmodium berghei, ablating the protein that converts ADP to ATP. Disruption of the ß subunit gene of the ATP synthase only marginally reduced asexual blood-stage parasite growth but completely blocked mouse-to-mouse transmission via Anopheles stephensi mosquitoes. Parasites lacking the ß subunit gene of the ATP synthase generated viable gametes that fuse and form ookinetes but cannot progress beyond this stage. Ookinetes lacking the ß subunit gene of the ATP synthase had normal motility but were not viable in the mosquito midgut and never made oocysts or sporozoites, thereby abrogating transmission to naive mice via mosquito bite. We crossed the self-infertile ATP synthase ß subunit knockout parasites with a male-deficient, self-infertile strain of P. berghei, which restored fertility and production of oocysts and sporozoites, which demonstrates that mitochondrial ATP synthase is essential for ongoing viability through the female, mitochondrion-carrying line of sexual reproduction in P. berghei malaria. Perturbation of ATP synthase completely blocks transmission to the mosquito vector and could potentially be targeted for disease control.


Assuntos
Regulação Enzimológica da Expressão Gênica , Malária/parasitologia , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Plasmodium berghei/enzimologia , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Animais , Proteínas de Bactérias/metabolismo , Biologia Computacional , Cruzamentos Genéticos , Culicidae , Feminino , Glicólise , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Oocistos/enzimologia , Oxigênio/química , Fenótipo , Plasmodium berghei/patogenicidade , Esporozoítos/enzimologia , Transgenes
10.
BMC Genomics ; 18(1): 734, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28923023

RESUMO

BACKGROUND: The clinical symptoms of malaria are caused by the asexual replication of Plasmodium parasites in the blood of the vertebrate host. To spread to new hosts, however, the malaria parasite must differentiate into sexual forms, termed gametocytes, which are ingested by a mosquito vector. Sexual differentiation produces either female or male gametocytes, and involves significant morphological and biochemical changes. These transformations prepare gametocytes for the rapid progression to gamete formation and fertilisation, which occur within 20 min of ingestion. Here we present the transcriptomes of asexual, female, and male gametocytes in P. berghei, and a comprehensive statistically-based differential-expression analysis of the transcriptional changes that underpin this sexual differentiation. RESULTS: RNA-seq analysis revealed numerous differences in the transcriptomes of female and male gametocytes compared to asexual stages. Overall, there is net downregulation of transcripts in gametocytes compared to asexual stages, with this trend more marked in female gametocytes. Our analysis identified transcriptional changes in previously-characterised gametocyte-specific pathways, which validated our approach. We also detected many previously-unreported female- and male-specific pathways and genes. Transcriptional biases in stage and gender were then used to investigate sex-specificity and sexual dimorphism of Plasmodium in an evolutionary context. Sex-related gene expression is well conserved between Plasmodium species, but relatively poorly conserved in related organisms outside this genus. This pattern of conservation is most evident in genes necessary for both male and female gametocyte formation. However, this trend is less pronounced for male-specific genes, which are more highly conserved outside the genus than genes specific to female development. CONCLUSIONS: We characterised the transcriptional changes that are integral to the development of the female and male sexual forms of Plasmodium. These differential-expression patterns provide a vital insight into understanding the gender-specific characteristics of this essential stage that is the primary target for treatments that block parasite transmission. Our results also offer insight into the evolution of sex genes through Alveolata, and suggest that many Plasmodium sex genes evolved within the genus. We further hypothesise that male gametocytes co-opted pre-existing cellular machinery in their evolutionary history, whereas female gametocytes evolved more through the development of novel, parasite-specific pathways.


Assuntos
Perfilação da Expressão Gênica , Plasmodium berghei/genética , Motivos de Nucleotídeos/genética , Filogenia , Plasmodium berghei/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico
11.
Cell Microbiol ; 18(3): 399-412, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26347246

RESUMO

Export of most malaria proteins into the erythrocyte cytosol requires the Plasmodium translocon of exported proteins (PTEX) and a cleavable Plasmodium export element (PEXEL). In contrast, the contribution of PTEX in the liver stages and export of liver stage proteins is unknown. Here, using the FLP/FRT conditional mutatagenesis system, we generate transgenic Plasmodium berghei parasites deficient in EXP2, the putative pore-forming component of PTEX. Our data reveal that EXP2 is important for parasite growth in the liver and critical for parasite transition to the blood, with parasites impaired in their ability to generate a patent blood-stage infection. Surprisingly, whilst parasites expressing a functional PTEX machinery can efficiently export a PEXEL-bearing GFP reporter into the erythrocyte cytosol during a blood stage infection, this same reporter aggregates in large accumulations within the confines of the parasitophorous vacuole membrane during hepatocyte growth. Notably HSP101, the putative molecular motor of PTEX, could not be detected during the early liver stages of infection, which may explain why direct protein translocation of this soluble PEXEL-bearing reporter or indeed native PEXEL proteins into the hepatocyte cytosol has not been observed. This suggests that PTEX function may not be conserved between the blood and liver stages of malaria infection.


Assuntos
Malária/parasitologia , Plasmodium berghei/patogenicidade , Proteínas de Protozoários/metabolismo , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico/metabolismo , Interações Hospedeiro-Parasita , Fígado/parasitologia , Camundongos , Plasmodium berghei/genética , Transporte Proteico/genética , Proteínas de Protozoários/genética , Tetraciclinas/farmacologia
12.
Nucleic Acids Res ; 43(9): 4661-75, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25870410

RESUMO

Single genes are often subject to alternative splicing, which generates alternative mature mRNAs. This phenomenon is widespread in animals, and observed in over 90% of human genes. Recent data suggest it may also be common in Apicomplexa. These parasites have small genomes, and economy of DNA is evolutionarily favoured in this phylum. We investigated the mechanism of alternative splicing in Toxoplasma gondii, and have identified and localized TgSR3, a homologue of ASF/SF2 (alternative-splicing factor/splicing factor 2, a serine-arginine-rich, or SR protein) to a subnuclear compartment. In addition, we conditionally overexpressed this protein, which was deleterious to growth. qRT-PCR was used to confirm perturbation of splicing in a known alternatively-spliced gene. We performed high-throughput RNA-seq to determine the extent of splicing modulated by this protein. Current RNA-seq algorithms are poorly suited to compact parasite genomes, and hence we complemented existing tools by writing a new program, GeneGuillotine, that addresses this deficiency by segregating overlapping reads into distinct genes. In order to identify the extent of alternative splicing, we released another program, JunctionJuror, that detects changes in intron junctions. Using this program, we identified about 2000 genes that were constitutively alternatively spliced in T. gondii. Overexpressing the splice regulator TgSR3 perturbed alternative splicing in over 1000 genes.


Assuntos
Processamento Alternativo , Proteínas Nucleares/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/metabolismo , Toxoplasma/genética , Estruturas do Núcleo Celular/química , Expressão Gênica , Proteínas Nucleares/análise , Proteínas Nucleares/classificação , Proteínas Nucleares/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/análise , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina , Software , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo
13.
BMC Biol ; 13: 52, 2015 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-26187647

RESUMO

BACKGROUND: Malaria invasion of red blood cells involves multiple parasite-specific targets that are easily accessible to inhibitory compounds, making it an attractive target for antimalarial development. However, no current antimalarial agents act against host cell invasion. RESULTS: Here, we demonstrate that the clinically used macrolide antibiotic azithromycin, which is known to kill human malaria asexual blood-stage parasites by blocking protein synthesis in their apicoplast, is also a rapid inhibitor of red blood cell invasion in human (Plasmodium falciparum) and rodent (P. berghei) malarias. Multiple lines of evidence demonstrate that the action of azithromycin in inhibiting parasite invasion of red blood cells is independent of its inhibition of protein synthesis in the parasite apicoplast, opening up a new strategy to develop a single drug with multiple parasite targets. We identified derivatives of azithromycin and erythromycin that are better invasion inhibitors than parent compounds, offering promise for development of this novel antimalarial strategy. CONCLUSIONS: Safe and effective macrolide antibiotics with dual modalities could be developed to combat malaria and reduce the parasite's options for resistance.


Assuntos
Antimaláricos/farmacologia , Azitromicina/farmacologia , Eritrócitos/parasitologia , Eritromicina/farmacologia , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Animais , Anopheles , Antimaláricos/química , Azitromicina/química , Eritromicina/química , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Malária/parasitologia , Camundongos , Plasmodium berghei/fisiologia , Plasmodium falciparum/fisiologia
14.
Mol Microbiol ; 89(6): 1167-86, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23869529

RESUMO

Plasmodium parasites remodel their vertebrate host cells by translocating hundreds of proteins across an encasing membrane into the host cell cytosol via a putative export machinery termed PTEX. Previously PTEX150, HSP101 and EXP2 have been shown to be bona fide members of PTEX. Here we validate that PTEX88 and TRX2 are also genuine members of PTEX and provide evidence that expression of PTEX components are also expressed in early gametocytes, mosquito and liver stages, consistent with observations that protein export is not restricted to asexual stages. Although amenable to genetic tagging, HSP101, PTEX150, EXP2 and PTEX88 could not be genetically deleted in Plasmodium berghei, in keeping with the obligatory role this complex is postulated to have in maintaining normal blood-stage growth. In contrast, the putative thioredoxin-like protein TRX2 could be deleted, with knockout parasites displaying reduced grow-rates, both in vivo and in vitro, and reduced capacity to cause severe disease in a cerebral malaria model. Thus, while not essential for parasite survival, TRX2 may help to optimize PTEX activity. Importantly, the generation of TRX2 knockout parasites that display altered phenotypes provides a much-needed tool to dissect PTEX function.


Assuntos
Parasitemia/parasitologia , Plasmodium berghei/enzimologia , Plasmodium berghei/patogenicidade , Tiorredoxinas/metabolismo , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Deleção de Genes , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Análise de Sobrevida , Tiorredoxinas/genética , Virulência , Fatores de Virulência/genética
15.
Antimicrob Agents Chemother ; 58(7): 3666-78, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24733477

RESUMO

Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite (gametocyte) biology and the identification of new drug leads. Lysine acetylation is an important posttranslational modification involved in regulating eukaryotic gene expression and other essential processes. Interfering with this process with histone deacetylase (HDAC) inhibitors is a validated strategy for cancer and other diseases, including asexual stage malaria parasites. Here we confirm the expression of at least one HDAC protein in Plasmodium falciparum gametocytes and show that histone and nonhistone protein acetylation occurs in this life cycle stage. The activity of the canonical HDAC inhibitors trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; Vorinostat) and a panel of novel HDAC inhibitors on early/late-stage gametocytes and on gamete formation was examined. Several compounds displayed early/late-stage gametocytocidal activity, with TSA being the most potent (50% inhibitory concentration, 70 to 90 nM). In contrast, no inhibitory activity was observed in P. falciparum gametocyte exflagellation experiments. Gametocytocidal HDAC inhibitors caused hyperacetylation of gametocyte histones, consistent with a mode of action targeting HDAC activity. Our data identify HDAC inhibitors as being among a limited number of compounds that target both asexual and sexual stage malaria parasites, making them a potential new starting point for gametocytocidal drug leads and valuable tools for dissecting gametocyte biology.


Assuntos
Acetilação/efeitos dos fármacos , Antimaláricos/farmacologia , Lisina/metabolismo , Plasmodium/efeitos dos fármacos , Plasmodium/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Flagelos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Plasmodium/crescimento & desenvolvimento , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
16.
Org Biomol Chem ; 12(24): 4132-42, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24834447

RESUMO

Several analogues of the natural compound prodigiosin with modified A- and C-rings were synthesised as were some of their tin, cobalt, boron and zinc complexes. The antimalarial activity of these prodigiosenes was evaluated in vitro using the 3D7 Plasmodium falciparum strain. The presence of a nitrogen atom in the A-ring is needed for antimalarial activity but the presence of an alkyl group at the ß'-position of the C-ring seems detrimental. Dibutyl tin complexes exhibit IC50 values mostly in the nanomolar range with equal or improved activity compared to the free-base prodigiosene ligand, despite the fact that the general toxicity of such tin complexes is demonstrably lower than that of the free-bases.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Prodigiosina/síntese química , Prodigiosina/farmacologia , Antimaláricos/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Prodigiosina/análogos & derivados , Prodigiosina/química , Estanho/química , Zinco/química
17.
Int J Radiat Oncol Biol Phys ; 120(1): 69-76, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613562

RESUMO

PURPOSE: Using diagnostic computed tomography (dCT) scans instead of CT simulation (CTsim) scans can increase departmental efficiency and reduce patient burden. The goal of the DART trial was to assess the efficacy and acceptability of dCT-based planning workflows with a focus on patient experiences, plan deliverability and adequacy of target coverage, and workflows. METHODS AND MATERIALS: Patients undergoing same-day CTsim and treatment for palliative radiation therapy to thoracic, abdominopelvic, or proximal limb targets with a recent dCT (within 28 days) in a reproducible position were eligible. After stratifying by target type (bone or soft tissue vs. visceral), participants were randomized (1:2 ratio) between CTsim-based (CTsim arm) vs. dCT-based planning (dCT arm). The primary endpoint was time in center (TIC), defined as total time spent in the cancer center on first day of treatment, from first radiation department appointment to first fraction completion. Secondary endpoints included plan deliverability, adequacy of target coverage, and stakeholder acceptability. RESULTS: Thirty-three patients (42 treatment sites) were enrolled between June 2022 and April 2023. The median age was 72 (interquartile range [IQR]: 67-78), 73% were male, and the most common primary cancers were lung (33%), prostate (24%), and breast (12%). The most common dose and fractionations were 8 Gy in 1 and 20 Gy in 5 fractions (50% and 43% of plans, respectively). TIC was 4.7 ± 1.1 hours (mean ± SD) in the CTsim arm vs. 0.41 ± 0.14 hours in the dCT arm (P < .001). All dCT plans were deliverable. All plans in both arms were rated as "acceptable" (80% CTsim; 81% dCT) or "acceptable with minor deviation" (20% CTsim; 19% dCT). Patient perception of acceptability was similar in both arms with the exception of time burden, which was rated as "acceptable" by 50% in the CTsim arm vs. 90% in the dCT arm (P = .025). CONCLUSION: dCT-based radiation planning substantially reduced TIC without detriment in plan deliverability or quality and had a tangible impact on patient experience with reduced patient-reported time burden.


Assuntos
Cuidados Paliativos , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Masculino , Cuidados Paliativos/métodos , Feminino , Planejamento da Radioterapia Assistida por Computador/métodos , Idoso , Pessoa de Meia-Idade , Neoplasias/radioterapia , Neoplasias/diagnóstico por imagem , Fluxo de Trabalho , Idoso de 80 Anos ou mais , Fatores de Tempo
18.
Head Neck ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073252

RESUMO

BACKGROUND: Treatment for dural recurrence of olfactory neuroblastoma (ONB) is not standardized. We assess the outcomes of stereotactic body radiotherapy (SBRT) in this population. METHODS: ONB patients with dural recurrences treated between 2013 and 2022 on a prospective registry were included. Tumor control, survival, and patient-reported quality of life were analyzed. RESULTS: Fourteen patients with 32 dural lesions were evaluated. Time to dural recurrence was 58.3 months. Thirty lesions (94%) were treated with SBRT to a median dose of 27 Gy in three fractions. Two patients (3 of 32 lesions; 9%) developed in-field radiographic progression, five patients (38%) experienced progression in non-contiguous dura. Two-year local control was 85% (95% CI: 51-96%). There were no >grade 3 acute toxicities and 1 case of late grade 3 brain radionecrosis. CONCLUSION: In this largest study of SBRT reirradiation for ONB dural recurrence to date, high local control rates with minimal toxicity were attainable.

19.
JAMA Oncol ; 10(5): 575-582, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451491

RESUMO

Importance: Patients with interstitial lung disease (ILD) and early-stage non-small cell lung cancer (NSCLC) have been reported to be at high risk of toxic effects after stereotactic ablative radiotherapy (SABR), but for many patients, there are limited alternative treatment options. Objective: To prospectively assess the benefits and toxic effects of SABR in this patient population. Design, Setting, and Participants: This prospective cohort study was conducted at 6 academic radiation oncology institutions, 5 in Canada and 1 in Scotland, with accrual between March 7, 2019, and January 12, 2022. Patients aged 18 years or older with fibrotic ILD and a diagnosis of T1-2N0 NSCLC who were not candidates for surgical resection were enrolled. Intervention: Patients were treated with SABR to a dose of 50 Gy in 5 fractions every other day. Main Outcomes and Measures: The study prespecified that SABR would be considered worthwhile if median overall survival-the primary end point-was longer than 1 year, with a grade 3 to 4 risk of toxic effects less than 35% and a grade 5 risk of toxic effects less than 15%. Secondary end points included toxic effects, progression-free survival (PFS), local control (LC), quality-of-life outcomes, and changes in pulmonary function. Intention-to-treat analysis was conducted. Results: Thirty-nine patients enrolled and received SABR. Median age was 78 (IQR, 67-83) years and 59% (n = 23) were male. At baseline, 70% (26 of 37) of patients reported dyspnea, median forced expiratory volume in first second of expiration was 80% (IQR, 66%-90%) predicted, median forced vital capacity was 84% (IQR, 69%-94%) predicted, and median diffusion capacity of the lung for carbon monoxide was 49% (IQR, 38%-61%) predicted. Median follow-up was 19 (IQR, 14-25) months. Overall survival at 1 year was 79% (95%, CI 62%-89%; P < .001 vs the unacceptable rate), and median overall survival was 25 months (95% CI, 14 months to not reached). Median PFS was 19 months (95% CI, 13-28 months), and 2-year LC was 92% (95% CI, 69%-98%). Adverse event rates (highest grade per patient) were grade 1 to 2: n = 12 (31%), grade 3: n = 4 (10%), grade 4: n = 0, and grade 5: n = 3 (7.7%, all due to respiratory deterioration). Conclusions and Relevance: In this trial, use of SABR in patients with fibrotic ILD met the prespecified acceptability thresholds for both toxicity and efficacy, supporting the use of SABR for curative-intent treatment after a careful discussion of risks and benefits. Trial Registration: ClinicalTrials.gov Identifier: NCT03485378.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Doenças Pulmonares Intersticiais , Neoplasias Pulmonares , Radiocirurgia , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Doenças Pulmonares Intersticiais/etiologia , Masculino , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Feminino , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Idoso , Estudos Prospectivos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Qualidade de Vida , Canadá
20.
Antimicrob Agents Chemother ; 57(3): 1455-67, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23318799

RESUMO

Most current antimalarials for treatment of clinical Plasmodium falciparum malaria fall into two broad drug families and target the food vacuole of the trophozoite stage. No antimalarials have been shown to target the brief extracellular merozoite form of blood-stage malaria. We studied a panel of 12 drugs, 10 of which have been used extensively clinically, for their invasion, schizont rupture, and growth-inhibitory activity using high-throughput flow cytometry and new approaches for the study of merozoite invasion and early intraerythrocytic development. Not surprisingly, given reported mechanisms of action, none of the drugs inhibited merozoite invasion in vitro. Pretreatment of erythrocytes with drugs suggested that halofantrine, lumefantrine, piperaquine, amodiaquine, and mefloquine diffuse into and remain within the erythrocyte and inhibit downstream growth of parasites. Studying the inhibitory activity of the drugs on intraerythrocytic development, schizont rupture, and reinvasion enabled several different inhibitory phenotypes to be defined. All drugs inhibited parasite replication when added at ring stages, but only artesunate, artemisinin, cycloheximide, and trichostatin A appeared to have substantial activity against ring stages, whereas the other drugs acted later during intraerythrocytic development. When drugs were added to late schizonts, only artemisinin, cycloheximide, and trichostatin A were able to inhibit rupture and subsequent replication. Flow cytometry proved valuable for in vitro assays of antimalarial activity, with the free merozoite population acting as a clear marker for parasite growth inhibition. These studies have important implications for further understanding the mechanisms of action of antimalarials, studying and evaluating drug resistance, and developing new antimalarials.


Assuntos
Antimaláricos/farmacologia , Merozoítos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Esquizontes/efeitos dos fármacos , Amodiaquina/farmacologia , Artemisininas/farmacologia , Artesunato , Cloroquina/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Ácidos Hidroxâmicos/farmacologia , Concentração Inibidora 50 , Mefloquina/farmacologia , Merozoítos/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Quinina/farmacologia , Quinolinas/farmacologia , Esquizontes/crescimento & desenvolvimento , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA