Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 163(3): 629-42, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26478182

RESUMO

Self-avoidance, a process preventing interactions of axons and dendrites from the same neuron during development, is mediated in vertebrates through the stochastic single-neuron expression of clustered protocadherin protein isoforms. Extracellular cadherin (EC) domains mediate isoform-specific homophilic binding between cells, conferring cell recognition through a poorly understood mechanism. Here, we report crystal structures for the EC1-EC3 domain regions from four protocadherin isoforms representing the α, ß, and γ subfamilies. All are rod shaped and monomeric in solution. Biophysical measurements, cell aggregation assays, and computational docking reveal that trans binding between cells depends on the EC1-EC4 domains, which interact in an antiparallel orientation. We also show that the EC6 domains are required for the formation of cis-dimers. Overall, our results are consistent with a model in which protocadherin cis-dimers engage in a head-to-tail interaction between EC1-EC4 domains from apposed cell surfaces, possibly forming a zipper-like protein assembly, and thus providing a size-dependent self-recognition mechanism.


Assuntos
Caderinas/química , Caderinas/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fenômenos Fisiológicos do Sistema Nervoso , Estrutura Terciária de Proteína , Alinhamento de Sequência
2.
Semin Cell Dev Biol ; 69: 140-150, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28743640

RESUMO

Clustered protocadherins mediate neuronal self-recognition and non-self discrimination-neuronal "barcoding"-which underpin neuronal self-avoidance in vertebrate neurons. Recent structural, biophysical, computational, and cell-based studies on protocadherin structure and function have led to a compelling molecular model for the barcoding mechanism. Protocadherin isoforms assemble into promiscuous cis-dimeric recognition units and mediate cell-cell recognition through homophilic trans-interactions. Each recognition unit is composed of two arms extending from the membrane proximal EC6 domains. A cis-dimeric recognition unit with each arm coding adhesive trans homophilic specificity can generate a zipper-like assembly that in turn suggests a chain termination mechanism for self-vs-non-self-discrimination among vertebrate neurons.


Assuntos
Caderinas/química , Caderinas/metabolismo , Neurônios/metabolismo , Animais , Humanos , Modelos Moleculares , Filogenia , Multimerização Proteica , Relação Estrutura-Atividade
3.
Elife ; 112022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35253643

RESUMO

The stochastic expression of fewer than 60 clustered protocadherin (cPcdh) isoforms provides diverse identities to individual vertebrate neurons and a molecular basis for self-/nonself-discrimination. cPcdhs form chains mediated by alternating cis and trans interactions between apposed membranes, which has been suggested to signal self-recognition. Such a mechanism requires that cPcdh cis dimers form promiscuously to generate diverse recognition units, and that trans interactions have precise specificity so that isoform mismatches terminate chain growth. However, the extent to which cPcdh interactions fulfill these requirements has not been definitively demonstrated. Here, we report biophysical experiments showing that cPcdh cis interactions are promiscuous, but with preferences favoring formation of heterologous cis dimers. Trans homophilic interactions are remarkably precise, with no evidence for heterophilic interactions between different isoforms. A new C-type cPcdh crystal structure and mutagenesis data help to explain these observations. Overall, the interaction characteristics we report for cPcdhs help explain their function in neuronal self-/nonself-discrimination.


Assuntos
Caderinas , Protocaderinas , Caderinas/metabolismo , Comunicação Celular , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo
4.
Neuron ; 90(4): 709-23, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27161523

RESUMO

Clustered protocadherin proteins (α-, ß-, and γ-Pcdhs) provide a high level of cell-surface diversity to individual vertebrate neurons, engaging in highly specific homophilic interactions to mediate important roles in mammalian neural circuit development. How Pcdhs bind homophilically through their extracellular cadherin (EC) domains among dozens of highly similar isoforms has not been determined. Here, we report crystal structures for extracellular regions from four mouse Pcdh isoforms (α4, α7, ß6, and ß8), revealing a canonical head-to-tail interaction mode for homophilic trans dimers comprising primary intermolecular EC1:EC4 and EC2:EC3 interactions. A subset of trans interface residues exhibit isoform-specific conservation, suggesting roles in recognition specificity. Mutation of these residues, along with trans-interacting partner residues, altered the specificities of Pcdh interactions. Together, these data show how sequence variation among Pcdh isoforms encodes their diverse strict homophilic recognition specificities, which are required for their key roles in neural circuit assembly.


Assuntos
Sequência de Aminoácidos/fisiologia , Caderinas/química , Caderinas/metabolismo , Neurônios/metabolismo , Células Cultivadas , Humanos , Rede Nervosa/metabolismo , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/metabolismo
5.
Elife ; 52016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782885

RESUMO

Stochastic cell-surface expression of α-, ß-, and γ-clustered protocadherins (Pcdhs) provides vertebrate neurons with single-cell identities that underlie neuronal self-recognition. Here we report crystal structures of ectodomain fragments comprising cell-cell recognition regions of mouse γ-Pcdhs γA1, γA8, γB2, and γB7 revealing trans-homodimers, and of C-terminal ectodomain fragments from γ-Pcdhs γA4 and γB2, which depict cis-interacting regions in monomeric form. Together these structures span the entire γ-Pcdh ectodomain. The trans-dimer structures reveal determinants of γ-Pcdh isoform-specific homophilic recognition. We identified and structurally mapped cis-dimerization mutations to the C-terminal ectodomain structures. Biophysical studies showed that Pcdh ectodomains from γB-subfamily isoforms formed cis dimers, whereas γA isoforms did not, but both γA and γB isoforms could interact in cis with α-Pcdhs. Together, these data show how interaction specificity is distributed over all domains of the γ-Pcdh trans interface, and suggest that subfamily- or isoform-specific cis-interactions may play a role in the Pcdh-mediated neuronal self-recognition code.


Assuntos
Caderinas/química , Caderinas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Animais , Proteínas Relacionadas a Caderinas , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA