Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Am Chem Soc ; 146(1): 946-953, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38154120

RESUMO

Hyperpolarized (HP) carbon-13 [13C] enables the specific investigation of dynamic metabolic and physiologic processes via in vivo MRI-based molecular imaging. As the leading HP metabolic agent, [1-13C]pyruvate plays a pivotal role due to its rapid tissue uptake and central role in cellular energetics. Dissolution dynamic nuclear polarization (d-DNP) is considered the gold standard method for the production of HP metabolic probes; however, development of a faster, less expensive technique could accelerate the translation of metabolic imaging via HP MRI to routine clinical use. Signal Amplification by Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) achieves rapid hyperpolarization by using parahydrogen (p-H2) as the source of nuclear spin order. Currently, SABRE is clinically limited due to the toxicity of the iridium catalyst, which is crucial to the SABRE process. To mitigate Ir contamination, we introduce a novel iteration of the SABRE catalyst, incorporating bis(polyfluoroalkylated) imidazolium salts. This novel perfluorinated SABRE catalyst retained polarization properties while exhibiting an enhanced hydrophobicity. This modification allows the easy removal of the perfluorinated SABRE catalyst from HP [1-13C]-pyruvate after polarization in an aqueous solution, using the ReD-SABRE protocol. The residual Ir content after removal was measured via ICP-MS at 177 ppb, which is the lowest reported to date for pyruvate and is sufficiently safe for use in clinical investigations. Further improvement is anticipated once automated processes for delivery and recovery are initiated. SABRE-SHEATH using the perfluorinated SABRE catalyst can become an attractive low-cost alternative to d-DNP to prepare biocompatible HP [1-13C]-pyruvate formulations for in vivo applications in next-generation molecular imaging modalities.


Assuntos
Irídio , Ácido Pirúvico , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Água
2.
Anal Chem ; 96(25): 10348-10355, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38857182

RESUMO

Low-field (LF) MRI promises soft-tissue imaging without the expensive, immobile magnets of clinical scanners but generally suffers from limited detection sensitivity and contrast. The sensitivity boost provided by hyperpolarization can thus be highly synergistic with LF MRI. Initial efforts to integrate a continuous-bubbling SABRE (signal amplification by reversible exchange) hyperpolarization setup with a portable, point-of-care 64 mT clinical MRI scanner are reported. Results from 1H SABRE MRI of pyrazine and nicotinamide are compared with those of benchtop NMR spectroscopy. Comparison with MRI signals from samples with known H2O/D2O ratios allowed quantification of the SABRE enhancements of imaged samples with various substrate concentrations (down to 3 mM). Respective limits of detection and quantification of 3.3 and 10.1 mM were determined with pyrazine 1H polarization (PH) enhancements of ∼1900 (PH ∼0.04%), supporting ongoing and envisioned efforts to realize SABRE-enabled MRI-based molecular imaging.


Assuntos
Imageamento por Ressonância Magnética , Imagem Molecular , Niacinamida , Sistemas Automatizados de Assistência Junto ao Leito , Pirazinas , Niacinamida/química , Imagem Molecular/métodos , Pirazinas/química , Humanos
3.
Anal Chem ; 96(10): 4171-4179, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38358916

RESUMO

We present an integrated, open-source device for parahydrogen-based hyperpolarization processes in the microtesla field regime with a cost of components of less than $7000. The device is designed to produce a batch of 13C and 15N hyperpolarized (HP) compounds via hydrogenative or non-hydrogenative parahydrogen-induced polarization methods that employ microtesla magnetic fields for efficient polarization transfer of parahydrogen-derived spin order to X-nuclei (e.g., 13C and 15N). The apparatus employs a layered structure (reminiscent of a Russian doll "Matryoshka") that includes a nonmagnetic variable-temperature sample chamber, a microtesla magnetic field coil (operating in the range of 0.02-75 microtesla), a three-layered mu-metal shield (to attenuate the ambient magnetic field), and a magnetic shield degaussing coil placed in the overall device enclosure. The gas-handling manifold allows for parahydrogen-gas flow and pressure control (up to 9.2 bar of total parahydrogen pressure). The sample temperature can be varied either using a water bath or a PID-controlled heat exchanger in the range from -12 to 80 °C. This benchtop device measures 62 cm (length) × 47 cm (width) × 47 cm (height), weighs 30 kg, and requires only connections to a high-pressure parahydrogen gas supply and a single 110/220 VAC power source. The utility of the device has been demonstrated using an example of parahydrogen pairwise addition to form HP ethyl [1-13C]acetate (P13C = 7%, [c] = 1 M). Moreover, the Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) technique was employed to demonstrate efficient hyperpolarization of 13C and 15N spins in a wide range of biologically relevant molecules, including [1-13C]pyruvate (P13C = 14%, [c] = 27 mM), [1-13C]-α-ketoglutarate (P13C = 17%), [1-13C]ketoisocaproate (P13C = 18%), [15N3]metronidazole (P15N = 13%, [c] = 20 mM), and others. While the vast majority of the utility studies have been performed in standard 5 mm NMR tubes, the sample chamber of the device can accommodate a wide range of sample container sizes and geometries of up to 1 L sample volume. The device establishes an integrated, simple, inexpensive, and versatile equipment gateway needed to facilitate parahydrogen-based hyperpolarization experiments ranging from basic science to preclinical applications; indeed, detailed technical drawings and a bill of materials are provided to support the ready translation of this design to other laboratories.

4.
Chemistry ; 30(25): e202304071, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38381807

RESUMO

Hyperpolarized 129Xe gas was FDA-approved as an inhalable contrast agent for magnetic resonance imaging of a wide range of pulmonary diseases in December 2022. Despite the remarkable success in clinical research settings, the widespread clinical translation of HP 129Xe gas faces two critical challenges: the high cost of the relatively low-throughput hyperpolarization equipment and the lack of 129Xe imaging capability on clinical MRI scanners, which have narrow-bandwidth electronics designed only for proton (1H) imaging. To solve this translational grand challenge of gaseous hyperpolarized MRI contrast agents, here we demonstrate the utility of batch-mode production of proton-hyperpolarized diethyl ether gas via heterogeneous pairwise addition of parahydrogen to ethyl vinyl ether. An approximately 0.1-liter bolus of hyperpolarized diethyl ether gas was produced in 1 second and injected in excised rabbit lungs. Lung ventilation imaging was performed using sub-second 2D MRI with up to 2×2 mm2 in-plane resolution using a clinical 0.35 T MRI scanner without any modifications. This feasibility demonstration paves the way for the use of inhalable diethyl ether as a gaseous contrast agent for pulmonary MRI applications using any clinical MRI scanner.


Assuntos
Meios de Contraste , Pulmão , Imageamento por Ressonância Magnética , Isótopos de Xenônio , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Animais , Pulmão/diagnóstico por imagem , Coelhos , Isótopos de Xenônio/química , Gases/química , Éter/química
5.
Phys Chem Chem Phys ; 25(24): 16446-16458, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37306121

RESUMO

Hyperpolarization of 13C-pyruvate via Signal Amplificaton By Reversibble Exchange (SABRE) is an important recent discovery because of both the relative simplicity of hyperpolarization and the central biological relevance of pyruvate as a biomolecular probe for in vitro or in vivo studies. Here, we analyze the [1,2-13C2]pyruvate-SABRE spin system and its field dependence theoretically and experimentally. We provide first-principles analysis of the governing 4-spin dihydride-13C2 Hamiltonian and numerical spin dynamics simulations of the 7-spin dihydride-13C2-CH3 system. The analytical and the numerical results are compared to matching systematic experiments. With these methods we unravel the observed spin state mixing of singlet states and triplet states at microTesla fields and we also analyze the dynamics during transfer from micro-Tesla field to high field for detection to understand the resulting spectra from the [1,2-13C2]pyruvate-SABRE system.

6.
J Phys Chem A ; 127(23): 5018-5029, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37278605

RESUMO

Efficient 15N-hyperpolarization of [15N3]metronidazole was reported previously using the Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) technique. This hyperpolarized FDA-approved antibiotic is a potential contrast agent because it can be administered in a large dose and because previous studies revealed long-lasting HP states with exponential decay constant T1 values of up to 10 min. Possible hypoxia-sensing applications have been proposed using hyperpolarized [15N3]metronidazole. In this work, we report on the functionalization of [15N3]metronidazole with a fluorine-19 moiety via a one-step reaction to substitute the -OH group. SABRE-SHEATH hyperpolarization studies of fluoro-[15N3]metronidazole revealed efficient hyperpolarization of all three 15N sites with maximum %P15N values ranging from 4.2 to 6.2%, indicating efficient spin-relayed polarization transfer in microtesla fields via the network formed by 2J15N-15N. The corresponding 15N to 19F spin-relayed polarization transfer was found to be far less efficient with %P19F of 0.16%, i.e., more than an order of magnitude lower than that of 15N. Relaxation dynamics studies in microtesla fields support a spin-relayed polarization transfer mechanism because all 15N and 19F spins share the same T1 value of ca. 16-20 s and the same magnetic field profile for the SABRE-SHEATH polarization process. We envision the use of fluoro-[15N3]metronidazole as a potential hypoxia sensor. It is anticipated that under hypoxic conditions, the nitro group of fluoro-[15N3]metronidazole undergoes electronic stepwise reduction to an amino derivative. Ab initio calculations of 15N and 19F chemical shifts of fluoro-[15N3]metronidazole and its putative hypoxia-induced metabolites clearly indicate that the chemical shift dispersions of all three 15N sites and the 19F site are large enough to enable the envisioned hypoxia-sensing approaches.


Assuntos
Flúor , Metronidazol , Espectroscopia de Ressonância Magnética/métodos , Isótopos de Nitrogênio
7.
Molecules ; 28(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770865

RESUMO

The present work investigates the potential for enhancing the NMR signals of DNA nucleobases by parahydrogen-based hyperpolarization. Signal amplification by reversible exchange (SABRE) and SABRE in Shield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) of selected DNA nucleobases is demonstrated with the enhancement (ε) of 1H, 15N, and/or 13C spins in 3-methyladenine, cytosine, and 6-O-guanine. Solutions of the standard SABRE homogenous catalyst Ir(1,5-cyclooctadeine)(1,3-bis(2,4,6-trimethylphenyl)imidazolium)Cl ("IrIMes") and a given nucleobase in deuterated ethanol/water solutions yielded low 1H ε values (≤10), likely reflecting weak catalyst binding. However, we achieved natural-abundance enhancement of 15N signals for 3-methyladenine of ~3300 and ~1900 for the imidazole ring nitrogen atoms. 1H and 15N 3-methyladenine studies revealed that methylation of adenine affords preferential binding of the imidazole ring over the pyrimidine ring. Interestingly, signal enhancements (ε~240) of both 15N atoms for doubly labelled cytosine reveal the preferential binding of specific tautomer(s), thus giving insight into the matching of polarization-transfer and tautomerization time scales. 13C enhancements of up to nearly 50-fold were also obtained for this cytosine isotopomer. These efforts may enable the future investigation of processes underlying cellular function and/or dysfunction, including how DNA nucleobase tautomerization influences mismatching in base-pairing.


Assuntos
Imidazóis , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Isótopos de Nitrogênio/química , DNA
8.
Angew Chem Int Ed Engl ; 62(8): e202213581, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36526582

RESUMO

Hyperpolarized orthohydrogen (o-H2 ) is a frequent product of parahydrogen-based hyperpolarization approaches like signal amplification by reversible exchange (SABRE), where the hyperpolarized o-H2 signal is usually absorptive. We describe a novel manifestation of this effect wherein large antiphase o-H2 signals are observed, with 1 H enhancements up to ≈500-fold (effective polarization PH ≈1.6 %). This anomalous effect is attained only when using an intact heterogeneous catalyst constructed using a metal-organic framework (MOF) and is qualitatively independent of substrate nature. This seemingly paradoxical observation is analogous to the "partial negative line" (PNL) effect recently explained in the context of Parahydrogen Induced Polarization (PHIP) by Ivanov and co-workers. The two-spin order of the o-H2 resonance is manifested by a two-fold higher Rabi frequency, and the lifetime of the antiphase HP o-H2 resonance is extended by several-fold.

9.
Anal Chem ; 94(39): 13422-13431, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36136056

RESUMO

α-Ketoglutarate is a key biomolecule involved in a number of metabolic pathways─most notably the TCA cycle. Abnormal α-ketoglutarate metabolism has also been linked with cancer. Here, isotopic labeling was employed to synthesize [1-13C,5-12C,D4]α-ketoglutarate with the future goal of utilizing its [1-13C]-hyperpolarized state for real-time metabolic imaging of α-ketoglutarate analytes and its downstream metabolites in vivo. The signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH) hyperpolarization technique was used to create 9.7% [1-13C] polarization in 1 minute in this isotopologue. The efficient 13C hyperpolarization, which utilizes parahydrogen as the source of nuclear spin order, is also supported by favorable relaxation dynamics at 0.4 µT field (the optimal polarization transfer field): the exponential 13C polarization buildup constant Tb is 11.0 ± 0.4 s whereas the 13C polarization decay constant T1 is 18.5 ± 0.7 s. An even higher 13C polarization value of 17.3% was achieved using natural-abundance α-ketoglutarate disodium salt, with overall similar relaxation dynamics at 0.4 µT field, indicating that substrate deuteration leads only to a slight increase (∼1.2-fold) in the relaxation rates for 13C nuclei separated by three chemical bonds. Instead, the gain in polarization (natural abundance versus [1-13C]-labeled) is rationalized through the smaller heat capacity of the "spin bath" comprising available 13C spins that must be hyperpolarized by the same number of parahydrogen present in each sample, in line with previous 15N SABRE-SHEATH studies. Remarkably, the C-2 carbon was not hyperpolarized in both α-ketoglutarate isotopologues studied; this observation is in sharp contrast with previously reported SABRE-SHEATH pyruvate studies, indicating that the catalyst-binding dynamics of C-2 in α-ketoglutarate differ from that in pyruvate. We also demonstrate that 13C spectroscopic characterization of α-ketoglutarate and pyruvate analytes can be performed at natural 13C abundance with an estimated detection limit of 80 micromolar concentration × *%P13C. All in all, the fundamental studies reported here enable a wide range of research communities with a new hyperpolarized contrast agent potentially useful for metabolic imaging of brain function, cancer, and other metabolically challenging diseases.


Assuntos
Ácidos Cetoglutáricos , Teofilina , Catálise , Meios de Contraste , Ácido Pirúvico
10.
Chemphyschem ; 23(2): e202100839, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34813142

RESUMO

Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) is investigated to achieve rapid hyperpolarization of 13 C1 spins of [1-13 C]pyruvate, using parahydrogen as the source of nuclear spin order. Pyruvate exchange with an iridium polarization transfer complex can be modulated via a sensitive interplay between temperature and co-ligation of DMSO and H2 O. Order-unity 13 C (>50 %) polarization of catalyst-bound [1-13 C]pyruvate is achieved in less than 30 s by restricting the chemical exchange of [1-13 C]pyruvate at lower temperatures. On the catalyst bound pyruvate, 39 % polarization is measured using a 1.4 T NMR spectrometer, and extrapolated to >50 % at the end of build-up in situ. The highest measured polarization of a 30-mM pyruvate sample, including free and bound pyruvate is 13 % when using 20 mM DMSO and 0.5 M water in CD3 OD. Efficient 13 C polarization is also enabled by favorable relaxation dynamics in sub-microtesla magnetic fields, as indicated by fast polarization buildup rates compared to the T1 spin-relaxation rates (e. g., ∼0.2 s-1 versus ∼0.1 s-1 , respectively, for a 6 mM catalyst-[1-13 C]pyruvate sample). Finally, the catalyst-bound hyperpolarized [1-13 C]pyruvate can be released rapidly by cycling the temperature and/or by optimizing the amount of water, paving the way to future biomedical applications of hyperpolarized [1-13 C]pyruvate produced via comparatively fast and simple SABRE-SHEATH-based approaches.


Assuntos
Ácido Pirúvico , Água , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Isótopos de Nitrogênio , Água/química
11.
Langmuir ; 38(41): 12630-12643, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36201686

RESUMO

Simultaneous writing and erasing of two and three molecules in one single step at the microscale using Polymeric Lithography Editor (PLE) probes is demonstrated. Simultaneous writing and erasing of three molecules was accomplished by rastering a nanoporous probe that was loaded with rhodamine B and fluorescein over a quinine-coated glass substrate. The solvated quinine molecules were erased and transported into the probe matrix, whereas both rhodamine and fluorescein molecules were simultaneously deposited and aligned with the path of the erased quinine on the substrate. The simultaneous writing and erasing of molecules is referred to as PLiSED. The writing and erasing speed can be easily tuned by adjusting the probe speed to as large as 10,000 µm2/s. The microscale patterns on the orders of square millimeter area were fabricated by erasing fluorescein with an efficiency (ηe) > 95% while simultaneously depositing rhodamine molecules at the erased spots. The roles of the probe porosity, transport medium, and kinetics of solvation for editing were also investigated─the presence of a transport medium at the probe-substrate interface is required for the transport of the molecules into and out of the probe. The physical and mechanical properties of the polymeric probes influenced molecular editing. Young's modulus values of the hydrated hydrogels composed of varying monomer/cross-linker ratios were estimated using atomic force microscopy. Probes with the highest observed erasing capacity were used for further experiments to investigate the effects of relative humidity and erasing time on editing. Careful control over experimental conditions provided high-quality editing of microscale patterns at high editing speed. Combining erasing and deposition of multiple molecules in one single step offers a unique opportunity to significantly improve the efficiency and the accuracy of lithographic editing at the microscale. PLiSED enables rapid on-site lithographic rectification and has considerable application values in high-quality lithography and solid surface modification.


Assuntos
Polímeros , Quinina , Fluoresceínas , Hidrogéis , Rodaminas , Redação
12.
J Phys Chem A ; 126(48): 9114-9123, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36441955

RESUMO

Hyperpolarized [1-13C]pyruvate is a revolutionary molecular probe enabling ultrafast metabolic MRI scans in 1 min. This technology is now under evaluation in over 30 clinical trials, which employ dissolution Dynamic Nuclear Polarization (d-DNP) to prepare a batch of the contrast agent; however, d-DNP technology is slow and expensive. The emerging SABRE-SHEATH hyperpolarization technique enables fast (under 1 min) and robust production of hyperpolarized [1-13C]pyruvate via simultaneous chemical exchange of parahydrogen and pyruvate on IrIMes hexacoordinate complexes. Here, we study the application of microtesla pulses to investigate their effect on C-13 polarization efficiency, compared to that of conventional SABRE-SHEATH employing a static field (∼0.4 µT), to provide the matching conditions of polarization transfer from parahydrogen-derived hydrides to the 13C-1 nucleus. Our results demonstrate that using square-microtesla pulses with optimized parameters can produce 13C-1 polarization levels of up to 14.8% (when detected, averaging over all resonances), corresponding to signal enhancement by over 122,000-fold at the clinically relevant field of 1.4 T. We anticipate that our results can be directly translated to other structurally similar biomolecules such as [1-13C]α-ketoglutarate and [1-13C]α-ketoisocaproate. Moreover, other more advanced pulse shapes can potentially further boost heteronuclear polarization attainable via pulsed SABRE-SHEATH.


Assuntos
Ácido Pirúvico
13.
Proc Natl Acad Sci U S A ; 121(18): e2405380121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657055
14.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209116

RESUMO

We present a pilot quality assurance (QA) study of a clinical-scale, automated, third-generation (GEN-3) 129Xe hyperpolarizer employing batch-mode spin-exchange optical pumping (SEOP) with high-Xe densities (50% natural abundance Xe and 50% N2 in ~2.6 atm total pressure sourced from Nova Gas Technologies) and rapid temperature ramping enabled by an aluminum heating jacket surrounding the 0.5 L SEOP cell. 129Xe hyperpolarization was performed over the course of 700 gas loading cycles of the SEOP cell, simulating long-term hyperpolarized contrast agent production in a clinical lung imaging setting. High levels of 129Xe polarization (avg. %PXe = 51.0% with standard deviation σPXe = 3.0%) were recorded with fast 129Xe polarization build-up time constants (avg. Tb = 25.1 min with standard deviation σTb = 3.1 min) across the first 500 SEOP cell refills, using moderate temperatures of 75 °C. These results demonstrate a more than 2-fold increase in build-up rate relative to previously demonstrated results in a comparable QA study on a second-generation (GEN-2) 129Xe hyperpolarizer device, with only a minor reduction in maximum achievable %PXe and with greater consistency over a larger number of SEOP cell refill processes at a similar polarization lifetime duration (avg. T1 = 82.4 min, standard deviation σT1 = 10.8 min). Additionally, the effects of varying SEOP jacket temperatures, distribution of Rb metal, and preparation and operation of the fluid path are quantified in the context of device installation, performance optimization and maintenance to consistently produce high 129Xe polarization values, build-up rates (Tb as low as 6 min) and lifetimes over the course of a typical high-throughput 129Xe polarization SEOP cell life cycle. The results presented further demonstrate the significant potential for hyperpolarized 129Xe contrast agent in imaging and bio-sensing applications on a clinical scale.

15.
Anal Chem ; 93(8): 3883-3888, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33591160

RESUMO

We present on the utility of in situ nuclear magnetic resonance (NMR) and near-infrared (NIR) spectroscopic techniques for automated advanced analysis of the 129Xe hyperpolarization process during spin-exchange optical pumping (SEOP). The developed software protocol, written in the MATLAB programming language, facilitates detailed characterization of hyperpolarized contrast agent production efficiency based on determination of key performance indicators, including the maximum achievable 129Xe polarization, steady-state Rb-129Xe spin-exchange and 129Xe polarization build-up rates, 129Xe spin-relaxation rates, and estimates of steady-state Rb electron polarization. Mapping the dynamics of 129Xe polarization and relaxation as a function of SEOP temperature enables systematic optimization of the batch-mode SEOP process. The automated analysis of a typical experimental data set, encompassing ∼300 raw NMR and NIR spectra combined across six different SEOP temperatures, can be performed in under 5 min on a laptop computer. The protocol is designed to be robust in operation on any batch-mode SEOP hyperpolarizer device. In particular, we demonstrate the implementation of a combination of low-cost NIR and low-frequency NMR spectrometers (∼$1,100 and ∼$300 respectively, ca. 2020) for use in the described protocols. The demonstrated methodology will aid in the characterization of NMR hyperpolarization hardware in the context of SEOP and other hyperpolarization techniques for more robust and less expensive clinical production of HP 129Xe and other contrast agents.

16.
Anal Chem ; 93(24): 8476-8483, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34102835

RESUMO

We report on a robust and low-cost parahydrogen generator design employing liquid nitrogen as a coolant. The core of the generator consists of catalyst-filled spiral copper tubing, which can be pressurized to 35 atm. Parahydrogen fraction >48% was obtained at 77 K with three nearly identical generators using paramagnetic hydrated iron oxide catalysts. Parahydrogen quantification was performed on the fly via benchtop NMR spectroscopy to monitor the signal from residual orthohydrogen-parahydrogen is NMR silent. This real-time quantification approach was also used to evaluate catalyst activation at up to 1.0 standard liter per minute flow rate. The reported inexpensive device can be employed for a wide range of studies employing parahydrogen as a source of nuclear spin hyperpolarization. To this end, we demonstrate the utility of this parahydrogen generator for hyperpolarization of concentrated sodium [1-13C]pyruvate, a metabolic contrast agent under investigation in numerous clinical trials. The reported pilot optimization of SABRE-SHEATH (signal amplification by reversible exchange-shield enables alignment transfer to heteronuclei) hyperpolarization yielded 13C signal enhancement of over 14,000-fold at a clinically relevant magnetic field of 1 T corresponding to approximately 1.2% 13C polarization-if near 100% parahydrogen would have been employed, the reported value would be tripled to 13C polarization of 3.5%.


Assuntos
Imageamento por Ressonância Magnética , Nitrogênio , Campos Magnéticos , Espectroscopia de Ressonância Magnética , Isótopos de Nitrogênio
17.
Chemphyschem ; 22(8): 710-715, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33825286

RESUMO

Demonstration of parahydrogen-induced polarization effects in hydrogenations catalyzed by heterogeneous catalysts instead of metal complexes in a homogeneous solution has opened an entirely new dimension for parahydrogen-based research, demonstrating its applicability not only for the production of catalyst-free hyperpolarized liquids and gases and long-lived non-equilibrium spin states for potential biomedical applications, but also for addressing challenges of modern fundamental and industrial catalysis including advanced mechanistic studies of catalytic reactions and operando NMR and MRI of reactors. This essay summarizes the progress achieved in this field by highlighting the research contributed to it by our colleague and friend Kirill V. Kovtunov whose scientific career ended unexpectedly and tragically at the age of 37. His role in this research was certainly crucial, further enhanced by a vast network of his contacts and collaborations at the national and international level.


Assuntos
Hidrogênio/química , Espectroscopia de Ressonância Magnética/normas , Padrões de Referência
18.
Chemphyschem ; 22(14): 1518-1526, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34043874

RESUMO

The role of ligands in rhodium- and iridium-catalyzed Parahydrogen Induced Polarization (PHIP) and SABRE (signal amplification by reversible exchange) chemistry has been studied in the benchmark systems, [Rh(diene)(diphos)]+ and [Ir(NHC)(sub)3 (H)2 ]+ , and shown to have a great impact on the degree of hyperpolarization observed. Here, we examine the role of the flanking moieties in the electron-rich monoanionic bis(carbene) aryl pincer ligand, Ar CCC (Ar=Dipp, 2,6-diisopropyl or Mes, 2,4,6-trimethylphenyl) on the cobalt-catalyzed PHIP and PHIP-IE (PHIP via Insertion and Elimination) chemistry that we have previously reported. The mesityl groups were exchanged for diisopropylphenyl groups to generate the (Dipp CCC)Co(N2 ) catalyst, which resulted in faster hydrogenation and up to 390-fold 1 H signal enhancements, larger than that of the (Mes CCC)Co-py (py=pyridine) catalyst. Additionally, the synthesis of the (Dipp CCC)Rh(N2 ) complex is reported and applied towards the hydrogenation of ethyl acrylate with parahydrogen to generate modest signal enhancements of both 1 H and 13 C nuclei. Lastly, the generation of two (Mes CCC)Ir complexes is presented and applied towards SABRE and PHIP-IE chemistry to only yield small 1 H signal enhancements of the partially hydrogenated product (PHIP) with no SABRE hyperpolarization.

19.
Angew Chem Int Ed Engl ; 60(41): 22126-22147, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34018297

RESUMO

Hyperpolarization is a technique that can increase nuclear spin polarization with the corresponding gains in nuclear magnetic resonance (NMR) signals by 4-8 orders of magnitude. When this process is applied to biologically relevant samples, the hyperpolarized molecules can be used as exogenous magnetic resonance imaging (MRI) contrast agents. A technique called spin-exchange optical pumping (SEOP) can be applied to hyperpolarize noble gases such as 129 Xe. Techniques based on hyperpolarized 129 Xe are poised to revolutionize clinical lung imaging, offering a non-ionizing, high-contrast alternative to computed tomography (CT) imaging and conventional proton MRI. Moreover, CT and conventional proton MRI report on lung tissue structure but provide little functional information. On the other hand, when a subject breathes hyperpolarized 129 Xe gas, functional lung images reporting on lung ventilation, perfusion and diffusion with 3D readout can be obtained in seconds. In this Review, the physics of SEOP is discussed and the different production modalities are explained in the context of their clinical application. We also briefly compare SEOP to other hyperpolarization methods and conclude this paper with the outlook for biomedical applications of hyperpolarized 129 Xe to lung imaging and beyond.


Assuntos
Xenônio/química , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
20.
Anal Chem ; 92(23): 15280-15284, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33170640

RESUMO

We present an automated parahydrogen generator (ParaSun) for clinical-scale applications in parahydrogen-induced polarization (PHIP) and signal amplification by reversible exchange (SABRE) at high pressures. The device employs a vacuum-pumped, Sunpower cryo-cooler (typically employed for cooling cellular network antennas) to achieve up to ∼87% parahydrogen enrichment at a temperature as low as ∼40 K and a maximum outlet pressure of ∼490 PSI. The device reaches the target temperature set-point in under 1 h. It employs a FeO(OH) catalyst for the ortho- to para-state conversion. A mass-flow controller (MFC) facilitates the controlled flow of H2 gas at a rate of 150 standard cubic centimeters per minute (sccm). This design bridges the gap between rudimentary 50% enrichment liquid-N2 baths and far costlier, near-unity-enrichment configurations employing high-H2 throughputs and <25 K temperatures. The design presented here should be of interest for those pursuing a wide variety of PHIP applications, including those involving the production of inhalable or injectable hyperpolarized contrast agents for biomedical imaging.


Assuntos
Hidrogênio/química , Pressão , Espectroscopia de Ressonância Magnética , Temperatura , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA