RESUMO
Macrophages frequently infiltrate tumors and can enhance cancer growth, yet the origins of the macrophage response are not well understood. Here we address molecular mechanisms of macrophage production in a conditional mouse model of lung adenocarcinoma. We report that overproduction of the peptide hormone Angiotensin II (AngII) in tumor-bearing mice amplifies self-renewing hematopoietic stem cells (HSCs) and macrophage progenitors. The process occurred in the spleen but not the bone marrow, and was independent of hemodynamic changes. The effects of AngII required direct hormone ligation on HSCs, depended on S1P(1) signaling, and allowed the extramedullary tissue to supply new tumor-associated macrophages throughout cancer progression. Conversely, blocking AngII production prevented cancer-induced HSC and macrophage progenitor amplification and thus restrained the macrophage response at its source. These findings indicate that AngII acts upstream of a potent macrophage amplification program and that tumors can remotely exploit the hormone's pathway to stimulate cancer-promoting immunity.
Assuntos
Adenocarcinoma/metabolismo , Angiotensina II/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Baço/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Angiotensina II/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Comunicação Celular , Movimento Celular , Proliferação de Células , Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Lisofosfolipídeos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Baço/patologia , Carga TumoralRESUMO
During progression of atherosclerosis, myeloid cells destabilize lipid-rich plaques in the arterial wall and cause their rupture, thus triggering myocardial infarction and stroke. Survivors of acute coronary syndromes have a high risk of recurrent events for unknown reasons. Here we show that the systemic response to ischaemic injury aggravates chronic atherosclerosis. After myocardial infarction or stroke, Apoe-/- mice developed larger atherosclerotic lesions with a more advanced morphology. This disease acceleration persisted over many weeks and was associated with markedly increased monocyte recruitment. Seeking the source of surplus monocytes in plaques, we found that myocardial infarction liberated haematopoietic stem and progenitor cells from bone marrow niches via sympathetic nervous system signalling. The progenitors then seeded the spleen, yielding a sustained boost in monocyte production. These observations provide new mechanistic insight into atherogenesis and provide a novel therapeutic opportunity to mitigate disease progression.
Assuntos
Aterosclerose/etiologia , Aterosclerose/patologia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Animais , Apolipoproteínas E/genética , Células-Tronco Hematopoéticas/citologia , Inflamação/complicações , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Baço/citologia , Células-Tronco/citologiaRESUMO
BACKGROUND: Myocarditis is characterized by inflammatory cell infiltration of the heart and subsequent deterioration of cardiac function. Monocytes are the most prominent population of accumulating leucocytes. We investigated whether in vivo administration of nanoparticle-encapsulated siRNA targeting chemokine (C-C motif) receptor 2 (CCR2)-a chemokine receptor crucial for leucocyte migration in humans and mice--reduces inflammation in autoimmune myocarditis. METHODS AND RESULTS: In myocardium of patients with myocarditis, CCL2 mRNA levels and CCR2(+) cells increased (P < 0.05), motivating us to pursue CCR2 silencing. Flow cytometric analysis showed that siRNA silencing of CCR2 (siCCR2) reduced the number of Ly6C(high) monocytes in hearts of mice with acute autoimmune myocarditis by 69% (P < 0.05), corroborated by histological assessment. The nanoparticle-delivered siRNA was not only active in monocytes but also in bone marrow haematopoietic progenitor cells. Treatment with siCCR2 reduced the migration of bone marrow granulocyte macrophage progenitors into the blood. Cellular magnetic resonance imaging (MRI) after injection of macrophage-avid magnetic nanoparticles detected myocarditis and therapeutic effects of RNAi non-invasively. Mice with acute myocarditis showed enhanced macrophage MRI contrast, which was prevented by siCCR2 (P < 0.05). Follow-up MRI volumetry revealed that siCCR2 treatment improved ejection fraction (P < 0.05 vs. control siRNA-treated mice). CONCLUSION: This study highlights the importance of CCR2 in the pathogenesis of myocarditis. In addition, we show that siCCR2 affects leucocyte progenitor trafficking. The data also point to a novel therapeutic strategy for the treatment of myocarditis.
Assuntos
Doenças Autoimunes/terapia , Quimiocina CCL2/genética , Miocardite/terapia , RNA Interferente Pequeno/farmacologia , Adulto , Animais , Movimento Celular , Quimiocina CCL2/metabolismo , Feminino , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Angiografia por Ressonância Magnética , Masculino , Camundongos , Monócitos/metabolismo , Nanopartículas , Interferência de RNA/fisiologiaRESUMO
RATIONALE: High-resolution imaging of the heart in vivo is challenging owing to the difficulty in accessing the heart and the tissue motion caused by the heartbeat. OBJECTIVE: Here, we describe a suction-assisted endoscope for visualizing fluorescently labeled cells and vessels in the beating heart tissue through a small incision made in the intercostal space. METHODS AND RESULTS: A suction tube with a diameter of 2 to 3 mm stabilizes the local tissue motion safely and effectively at a suction pressure of 50 mm Hg. Using a minimally invasive endoscope integrated into a confocal microscope, we performed fluorescence cellular imaging in both normal and diseased hearts in live mice for an hour per session repeatedly over a few weeks. Real-time imaging revealed the surprisingly rapid infiltration of CX3CR1(+) monocytes into the injured site within several minutes after acute myocardial infarction. CONCLUSIONS: The time-lapse analysis of flowing and rolling (patrolling) monocytes in the heart and the peripheral circulation provides evidence that the massively recruited monocytes come first from the vascular reservoir and later from the spleen. The imaging method requires minimal surgical preparation and can be implemented into standard intravital microscopes. Our results demonstrate the applicability of our imaging method for a wide range of cardiovascular research.
Assuntos
Movimento Celular/fisiologia , Endoscopia/métodos , Monócitos/fisiologia , Infarto do Miocárdio/patologia , Imagem com Lapso de Tempo/métodos , Animais , Contagem de Células/métodos , Endoscópios , Frequência Cardíaca/fisiologia , Imobilização/instrumentação , Imobilização/métodos , Imunidade Celular/fisiologia , Migração e Rolagem de Leucócitos/fisiologia , Camundongos , Microscopia Confocal/instrumentação , Monócitos/citologia , Contração Miocárdica/fisiologia , Infarto do Miocárdio/imunologia , Imagem Óptica/métodos , Sucção/instrumentação , Sucção/métodosRESUMO
The environments that harbor hematopoietic stem and progenitor cells are critical to explore for a better understanding of hematopoiesis during health and disease. These compartments often are inaccessible for controlled and rapid experimentation, thus limiting studies to the evaluation of conventional cell culture and transgenic animal models. Here we describe the manufacture and image-guided monitoring of an engineered microenvironment with user-defined properties that recruits hematopoietic progenitors into the implant. Using intravital imaging and fluorescence molecular tomography, we show in real time that the cell homing and retention process is efficient and durable for short- and long-term engraftment studies. Our results indicate that bone marrow stromal cells, precoated on the implant, accelerate the formation of new sinusoidal blood vessels with vascular integrity at the microcapillary level that enhances the recruitment hematopoietic progenitor cells to the site. This implantable construct can serve as a tool enabling the study of hematopoiesis.
Assuntos
Células-Tronco Hematopoéticas/citologia , Neoplasias/patologia , Nicho de Células-Tronco , Alicerces Teciduais , Microambiente Tumoral , Animais , Matriz Extracelular , Humanos , Hidrogéis , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Microscopia Confocal , Tomografia/métodosRESUMO
Tumor-associated macrophages (TAMs) and tumor-associated neutrophils (TANs) can control cancer growth and exist in almost all solid neoplasms. The cells are known to descend from immature monocytic and granulocytic cells, respectively, which are produced in the bone marrow. However, the spleen is also a recently identified reservoir of monocytes, which can play a significant role in the inflammatory response that follows acute injury. Here, we evaluated the role of the splenic reservoir in a genetic mouse model of lung adenocarcinoma driven by activation of oncogenic Kras and inactivation of p53. We found that high numbers of TAM and TAN precursors physically relocated from the spleen to the tumor stroma, and that recruitment of tumor-promoting spleen-derived TAMs required signaling of the chemokine receptor CCR2. Also, removal of the spleen, either before or after tumor initiation, reduced TAM and TAN responses significantly and delayed tumor growth. The mechanism by which the spleen was able to maintain its reservoir capacity throughout tumor progression involved, in part, local accumulation in the splenic red pulp of typically rare extramedullary hematopoietic stem and progenitor cells, notably granulocyte and macrophage progenitors, which produced CD11b(+) Ly-6C(hi) monocytic and CD11b(+) Ly-6G(hi) granulocytic cells locally. Splenic granulocyte and macrophage progenitors and their descendants were likewise identified in clinical specimens. The present study sheds light on the origins of TAMs and TANs, and positions the spleen as an important extramedullary site, which can continuously supply growing tumors with these cells.
Assuntos
Macrófagos/imunologia , Neoplasias/patologia , Neutrófilos/imunologia , Animais , Humanos , Camundongos , Neoplasias/imunologia , Baço/imunologia , Baço/patologiaRESUMO
The treatment of diseased vasculature remains challenging, in part because of the difficulty in implanting drug-eluting devices without subjecting vessels to damaging mechanical forces. Implanting materials using adhesive forces could overcome this challenge, but materials have previously not been shown to durably adhere to intact endothelium under blood flow. Marine mussels secrete strong underwater adhesives that have been mimicked in synthetic systems. Here we develop a drug-eluting bioadhesive gel that can be locally and durably glued onto the inside surface of blood vessels. In a mouse model of atherosclerosis, inflamed plaques treated with steroid-eluting adhesive gels had reduced macrophage content and developed protective fibrous caps covering the plaque core. Treatment also lowered plasma cytokine levels and biomarkers of inflammation in the plaque. The drug-eluting devices developed here provide a general strategy for implanting therapeutics in the vasculature using adhesive forces and could potentially be used to stabilize rupture-prone plaques.
Assuntos
Adesivos/química , Vasos Sanguíneos/patologia , Dexametasona/uso terapêutico , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Adesividade/efeitos dos fármacos , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Artérias/efeitos dos fármacos , Artérias/patologia , Vasos Sanguíneos/efeitos dos fármacos , Catecóis/química , Dexametasona/farmacologia , Sistemas de Liberação de Medicamentos , Feminino , Géis/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Implantes Experimentais , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Solubilidade , Estresse Mecânico , Estresse Fisiológico/efeitos dos fármacosRESUMO
BACKGROUND: Exaggerated and prolonged inflammation after myocardial infarction (MI) accelerates left ventricular remodeling. Inflammatory pathways may present a therapeutic target to prevent post-MI heart failure. However, the appropriate magnitude and timing of interventions are largely unknown, in part because noninvasive monitoring tools are lacking. Here, we used nanoparticle-facilitated silencing of CCR2, the chemokine receptor that governs inflammatory Ly-6C(high) monocyte subset traffic, to reduce infarct inflammation in apolipoprotein E-deficient (apoE(-/-)) mice after MI. We used dual-target positron emission tomography/magnetic resonance imaging of transglutaminase factor XIII (FXIII) and myeloperoxidase (MPO) activity to monitor how monocyte subset-targeted RNAi altered infarct inflammation and healing. METHODS AND RESULTS: Flow cytometry, gene expression analysis, and histology revealed reduced monocyte numbers and enhanced resolution of inflammation in infarcted hearts of apoE(-/-) mice that were treated with nanoparticle-encapsulated siRNA. To follow extracellular matrix cross-linking noninvasively, we developed a fluorine-18-labeled positron emission tomography agent ((18)F-FXIII). Recruitment of MPO-rich inflammatory leukocytes was imaged with a molecular magnetic resonance imaging sensor of MPO activity (MPO-Gd). Positron emission tomography/magnetic resonance imaging detected anti-inflammatory effects of intravenous nanoparticle-facilitated siRNA therapy (75% decrease of MPO-Gd signal; P<0.05), whereas (18)F-FXIII positron emission tomography reflected unimpeded matrix cross-linking in the infarct. Silencing of CCR2 during the first week after MI improved ejection fraction on day 21 after MI from 29% to 35% (P<0.05). CONCLUSION: CCR2-targeted RNAi reduced recruitment of Ly-6C(high) monocytes, attenuated infarct inflammation, and curbed post-MI left ventricular remodeling.
Assuntos
Aterosclerose/terapia , Marcação de Genes/métodos , Monócitos/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Interferência de RNA/fisiologia , Receptores CCR2/genética , Cicatrização/genética , Sequência de Aminoácidos , Animais , Aterosclerose/genética , Aterosclerose/patologia , Feminino , Predisposição Genética para Doença , Terapia Genética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Monócitos/patologia , Infarto do Miocárdio/patologia , Distribuição Aleatória , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismoRESUMO
BACKGROUND: Atherosclerotic lesions are believed to grow via the recruitment of bone marrow-derived monocytes. Among the known murine monocyte subsets, Ly-6C(high) monocytes are inflammatory, accumulate in lesions preferentially, and differentiate. Here, we hypothesized that the bone marrow outsources the production of Ly-6C(high) monocytes during atherosclerosis. METHODS AND RESULTS: Using murine models of atherosclerosis and fate-mapping approaches, we show that hematopoietic stem and progenitor cells progressively relocate from the bone marrow to the splenic red pulp, where they encounter granulocyte macrophage colony-stimulating factor and interleukin-3, clonally expand, and differentiate to Ly-6C(high) monocytes. Monocytes born in such extramedullary niches intravasate, circulate, and accumulate abundantly in atheromata. On lesional infiltration, Ly-6C(high) monocytes secrete inflammatory cytokines, reactive oxygen species, and proteases. Eventually, they ingest lipids and become foam cells. CONCLUSIONS: Our findings indicate that extramedullary sites supplement the hematopoietic function of the bone marrow by producing circulating inflammatory cells that infiltrate atherosclerotic lesions.
Assuntos
Antígenos Ly , Aterosclerose/patologia , Movimento Celular/imunologia , Hematopoese Extramedular/imunologia , Monócitos/patologia , Animais , Antígenos Ly/biossíntese , Aterosclerose/imunologia , Medula Óssea , Diferenciação Celular , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Células-Tronco Hematopoéticas/patologia , Inflamação , Interleucina-3 , Camundongos , Monócitos/imunologiaRESUMO
Ligands of the B7 family provide both positive and negative costimulatory signals to the CD28 family of receptors on T lymphocytes, the balance of which determines the immune response. B7-H3 is a member of the B7 family whose function in T-cell activation has been the subject of some controversy: in autoimmunity and tumor immunity, it has been described as both costimulatory and coinhibitory, while in transplantation, B7-H3 signaling is thought to contribute to graft rejection. However, we now demonstrate results to the contrary. Signaling through a putative B7-H3 receptor prolonged allograft survival in a fully MHC-mismatched cardiac model and promoted a shift toward a Th2 milieu; conversely, B7-H3 blockade, achieved by use of a blocking antibody, resulted in accelerated rejection, an effect associated with enhanced IFN-γ production. Finally, graft prolongation achieved by CTLA4 Ig was shortened both by B7-H3 blockade and the absence of recipient B7-H3. These findings suggest a coinhibitory role for B7-H3. However, experience with other CD28/B7 family members suggests that immune redundancy plays a crucial role in determining the functions of various pathways. Given the abundance of conflicting data, it is plausible that, under differing conditions, B7-H3 may have both positive and negative costimulatory functions.
Assuntos
Antígenos B7/imunologia , Transplante de Coração/imunologia , Transdução de Sinais/imunologia , Células Th1/imunologia , Transplante Homólogo/imunologia , Abatacepte , Animais , Antígenos B7/metabolismo , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Imunoconjugados/imunologia , Imunoconjugados/metabolismo , Interferon gama/imunologia , Interferon gama/metabolismo , Cinética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Imunologia de TransplantesRESUMO
RATIONALE: Monocytes recruited to ischemic myocardium originate from a reservoir in the spleen, and the release from their splenic niche relies on angiotensin (Ang) II signaling. OBJECTIVE: Because monocytes are centrally involved in tissue repair after ischemia, we hypothesized that early angiotensin-converting enzyme (ACE) inhibitor therapy impacts healing after myocardial infarction partly via effects on monocyte traffic. METHODS AND RESULTS: In a mouse model of permanent coronary ligation, enalapril arrested the release of monocytes from the splenic reservoir and consequently reduced their recruitment into the healing infarct by 45%, as quantified by flow cytometry of digested infarcts. Time-lapse intravital microscopy revealed that enalapril reduces monocyte motility in the spleen. In vitro migration assays and Western blotting showed that this was caused by reduced signaling through the Ang II type 1 receptor. We then studied the long-term consequences of blocked splenic monocyte release in atherosclerotic apolipoprotein (apo)E(-/-) mice, in which infarct healing is impaired because of excessive inflammation in the cardiac wound. Enalapril improved histologic healing biomarkers and reduced inflammation in infarcts measured by FMT-CT (fluorescence molecular tomography in conjunction with x-ray computed tomography) of proteolytic activity. ACE inhibition improved MRI-derived ejection fraction by 14% on day 21, despite initially comparable infarct size. In apoE(-/-) mice, ischemia/reperfusion injury resulted in larger infarct size and enhanced monocyte recruitment and was reversible by enalapril treatment. Splenectomy reproduced antiinflammatory effects of enalapril. CONCLUSION: This study suggests that benefits of early ACE inhibition after myocardial infarction can partially be attributed to its potent antiinflammatory impact on the splenic monocyte reservoir.
Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Movimento Celular/efeitos dos fármacos , Monócitos/enzimologia , Monócitos/patologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Baço/enzimologia , Baço/patologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Movimento Celular/fisiologia , Enalapril/farmacologia , Enalapril/uso terapêutico , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Baço/efeitos dos fármacosRESUMO
OBJECTIVE: Homozygosity for a 1.7 kb intragenic duplication of the Haptoglobin (Hp) gene (Hp 2-2 genotype), present in 36% of the population, has been associated with a 2-3 fold increased incidence of atherothrombosis in individuals with Diabetes (DM) in 10 longitudinal studies compared to DM individuals not homozygous for this duplication (Hp 1-1/2-1). The increased CVD risk associated with the Hp 2-2 genotype has been shown to be prevented with vitamin E supplementation in man. We sought to determine if there was an interaction between the Hp genotype and vitamin E on atherosclerotic plaque growth and stability in a transgenic model of the Hp polymorphism. METHODS AND RESULTS: Brachiocephalic artery atherosclerotic plaque volume was serially assessed by high resolution ultrasound in 28 Hp 1-1 and 26 Hp 2-2 mice in a C57Bl/6 ApoE(-/-) background. Hp 2-2 mice had more rapid plaque growth and an increased incidence of plaque hemorrhage and rupture. Vitamin E significantly reduced plaque growth in Hp 2-2 but not in Hp 1-1 mice with a significant pharmacogenomic interaction between the Hp genotype and vitamin E on plaque growth. CONCLUSIONS: These results may help explain why vitamin E supplementation in man can prevent CVD in Hp 2-2 DM but not in non Hp 2-2 DM individuals.
Assuntos
Genótipo , Haptoglobinas/genética , Placa Aterosclerótica/genética , Vitamina E/metabolismo , Alelos , Animais , Antioxidantes/metabolismo , Apolipoproteínas E/genética , Tronco Braquiocefálico/patologia , Suplementos Nutricionais , Progressão da Doença , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxigênio/químicaRESUMO
During the inflammatory response that drives atherogenesis, macrophages accumulate progressively in the expanding arterial wall. The observation that circulating monocytes give rise to lesional macrophages has reinforced the concept that monocyte infiltration dictates macrophage buildup. Recent work has indicated, however, that macrophage accumulation does not depend on monocyte recruitment in some inflammatory contexts. We therefore revisited the mechanism underlying macrophage accumulation in atherosclerosis. In murine atherosclerotic lesions, we found that macrophages turn over rapidly, after 4 weeks. Replenishment of macrophages in these experimental atheromata depends predominantly on local macrophage proliferation rather than monocyte influx. The microenvironment orchestrates macrophage proliferation through the involvement of scavenger receptor A (SR-A). Our study reveals macrophage proliferation as a key event in atherosclerosis and identifies macrophage self-renewal as a therapeutic target for cardiovascular disease.
Assuntos
Aterosclerose/imunologia , Aterosclerose/patologia , Proliferação de Células , Macrófagos/fisiologia , Animais , Células Cultivadas , Inflamação , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/fisiologiaRESUMO
In a cell-free approach to regenerative therapeutics, transient application of paracrine factors in vivo could be used to alter the behavior and fate of progenitor cells to achieve sustained clinical benefits. Here we show that intramyocardial injection of synthetic modified RNA (modRNA) encoding human vascular endothelial growth factor-A (VEGF-A) results in the expansion and directed differentiation of endogenous heart progenitors in a mouse myocardial infarction model. VEGF-A modRNA markedly improved heart function and enhanced long-term survival of recipients. This improvement was in part due to mobilization of epicardial progenitor cells and redirection of their differentiation toward cardiovascular cell types. Direct in vivo comparison with DNA vectors and temporal control with VEGF inhibitors revealed the greatly increased efficacy of pulse-like delivery of VEGF-A. Our results suggest that modRNA is a versatile approach for expressing paracrine factors as cell fate switches to control progenitor cell fate and thereby enhance long-term organ repair.
Assuntos
Linhagem da Célula , Infarto do Miocárdio/terapia , Miocárdio/patologia , RNA Mensageiro/metabolismo , Regeneração , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Apoptose , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Células Endoteliais/patologia , Técnicas de Transferência de Genes , Humanos , Cinética , Luciferases/metabolismo , Camundongos , Modelos Biológicos , Músculo Esquelético/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , RNA Mensageiro/genética , Transplante de Células-Tronco , Análise de Sobrevida , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Motion artifacts continue to present a major challenge to single cell imaging in cardiothoracic organs such as the beating heart, blood vessels, or lung. In this study, we present a new water-immersion suctioning stabilizer that enables minimally invasive intravital fluorescence microscopy using water-based stick objectives. The stabilizer works by reducing major motion excursions and can be used in conjunction with both prospective or retrospective gating approaches. We show that the new approach offers cellular resolution in the beating murine heart without perturbing normal physiology. In addition, because this technique allows multiple areas to be easily probed, it offers the opportunity for wide area coverage at high resolution.
RESUMO
Identifying circulating tumor cells (CTCs) with greater sensitivity could facilitate early detection of cancer and rapid assessment of treatment response. Most current technologies use EpCAM expression as a CTC identifier. However, given that a significant fraction of cancer patients have low or even absent EpCAM levels, there is a need for better detection methods. Here, we hypothesize that a multimarker strategy combined with direct sensing of CTC in whole blood would increase the detection of CTC in patients. Accordingly, molecular profiling of biopsies from a patient cohort revealed a four-marker set (EpCAM, HER-2, EGFR, and MUC-1) capable of effectively differentiating cancer cells from normal host cells. Using a point-of-care micro-nuclear magnetic resonance (µNMR) system, we consequently show that this multimarker combination readily detects individual CTC directly in whole blood without the need for primary purification. We also confirm these results in a comparative trial of patients with ovarian cancer. This platform could potentially benefit a broad range of applications in clinical oncology.
Assuntos
Biomarcadores Tumorais/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Células Neoplásicas Circulantes/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Humanos , Espectroscopia de Ressonância Magnética/instrumentação , Masculino , Pessoa de Meia-Idade , Sensibilidade e EspecificidadeRESUMO
Observing drug responses in the tumor microenvironment in vivo can be technically challenging. As a result, cellular responses to molecularly targeted cancer drugs are often studied in cell culture, which does not accurately represent the behavior of cancer cells growing in vivo. Using high-resolution microscopy and fluorescently labeled genetic reporters for apoptosis, we developed an approach to visualize drug-induced cell death at single-cell resolution in vivo. Stable expression of the mitochondrial intermembrane protein IMS-RP was established in human breast and pancreatic cancer cells. Image analysis was then used to quantify release of IMS-RP into the cytoplasm upon apoptosis and irreversible mitochondrial permeabilization. Both breast and pancreatic cancer cells showed higher basal apoptotic rates in vivo than in culture. To study drug-induced apoptosis, we exposed tumor cells to navitoclax (ABT-263), an inhibitor of Bcl-2, Bcl-xL, and Bcl-w, both in vitro and in vivo. Although the tumors responded to Bcl-2 inhibition in vivo, inducing apoptosis in around 20% of cancer cells, the observed response was much higher in cell culture. Together, our findings show an imaging technique that can be used to directly visualize cell death within the tumor microenvironment in response to drug treatment.
Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/fisiopatologia , Membranas Mitocondriais/fisiologia , Imagem Molecular/métodos , Neoplasias Pancreáticas/fisiopatologia , Sulfonamidas/farmacologia , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Proteínas de Fluorescência Verde , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Nus , Membranas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Análise de Célula Única , Microambiente TumoralRESUMO
Real-time imaging of moving organs and tissues at microscopic resolutions represents a major challenge in studying the complex biology of live animals. Here we present a technique based on a novel stabilizer setup combined with a gating acquisition algorithm for the imaging of a beating murine heart at the single-cell level. The method allows serial in vivo fluorescence imaging of the beating heart in live mice in both confocal and nonlinear modes over the course of several hours. We demonstrate the utility of this technique for in vivo optical sectioning and dual-channel time-lapse fluorescence imaging of cardiac ischaemia. The generic method could be adapted to other moving organs and thus broadly facilitate in vivo microscopic investigations.
Assuntos
Microscopia Confocal/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Contração Miocárdica/fisiologia , Algoritmos , Animais , Coração , CamundongosRESUMO
To date there is a lack of tools to map the spatio-temporal dynamics of diverse cells in experimental heart models. Conventional histology is labor intensive with limited coverage, whereas many imaging techniques do not have sufficiently high enough spatial resolution to map cell distributions. We have designed and built a high resolution, dual channel Born-normalized near-infrared fluorescence optical projection tomography system to quantitatively and spatially resolve molecular agents distribution within whole murine heart. We validated the use of the system in a mouse model of monocytes/macrophages recruitment during myocardial infarction. While acquired, data were processed and reconstructed in real time. Tomographic analysis and visualization of the key inflammatory components were obtained via a mathematical formalism based on left ventricular modeling. We observed extensive monocyte recruitment within and around the infarcted areas and discovered that monocytes were also extensively recruited into non-ischemic myocardium, beyond that of injured tissue, such as the septum.