Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Chemphyschem ; : e202400127, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837609

RESUMO

We generalize the definitions of local scalar potentials named vkin and vN-1, which are relevant to properly describe phenomena such as molecular dissociation with density-functional theory, to the case in which the electronic wavefunction corresponds to a complex current-carrying state. In such a case, an extra term in the form of a vector potential appears which cannot be gauged away. Both scalar and vector potentials are introduced via the exact factorization formalism which allows us to express the given Schrödinger equation as two coupled equations, one for the marginal and one for the conditional amplitude. The electronic vector potential is directly related to the paramagnetic current density carried by the total wavefunction and to the diamagnetic current density in the equation for the marginal amplitude. An explicit example of this vector potential in a triplet state of two non-interacting electrons is showcased together with its associated circulation, giving rise to a non-vanishing geometric phase. Some connections with the exact factorization for the full molecular wavefunction beyond the Born-Oppenheimer approximation are also discussed.

2.
J Phys Chem A ; 128(20): 4138-4149, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38717868

RESUMO

We study the adiabatic connection that has as weak-coupling expansion the Møller-Plesset perturbation series, generalizing to the open-shell case previous closed-shell results for the large-coupling limit. We first focus on the hydrogen atom with fractional spins, providing results along the adiabatic connection from small to large coupling strengths. We reveal an intriguing phase diagram and an equation for the large-coupling leading order that has closed-form solutions for specific choices of its relevant quantum numbers. We then show that the hydrogen atom results provide variational estimates for the large-coupling leading terms for the general many-electron open-shell case in terms of functionals of the Hartree-Fock α-spin and ß-spin densities.

3.
Phys Rev Lett ; 130(10): 106401, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962035

RESUMO

Density functional theory (DFT) has greatly expanded our ability to affordably compute and understand electronic ground states, by replacing intractable ab initio calculations by models based on paradigmatic physics from high- and low-density limits. But, a comparable treatment of excited states lags behind. Here, we solve this outstanding problem by employing a generalization of density functional theory to ensemble states (EDFT). We thus address important paradigmatic cases of all electronic systems in strongly (low-density) and weakly (high-density) correlated regimes. We show that the high-density limit connects to recent, exactly solvable EDFT results. The low-density limit reveals an unnoticed and most unexpected result-density functionals for strictly correlated ground states can be reused directly for excited states. Nontrivial dependence on excitation structure only shows up at third leading order. Overall, our results provide foundations for effective models of excited states that interpolate between exact low- and high-density limits, which we illustrate on the cases of singlet-singlet excitations in H_{2} and a ring of quantum wells.

4.
J Chem Phys ; 159(23)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38112505

RESUMO

We numerically study the strong-interaction limit of the exchange-correlation functional for neutral atoms and Bohr atoms as the number of electrons increases. Using a compact representation, we analyze the second-order gradient expansion, comparing it with the one for exchange (weak interaction limit). The two gradient expansions, at strong and weak interaction, turn out to be very similar in magnitude but with opposite signs. We find that the point-charge plus continuum model is surprisingly accurate for the gradient expansion coefficient at strong coupling, while generalized gradient approximations, such as Perdew-Burke-Ernzerhof (PBE) and PBEsol, severely underestimate it. We then use our results to analyze the Lieb-Oxford bound from the point of view of slowly varying densities, clarifying some aspects on the bound at a fixed number of electrons.

5.
Phys Chem Chem Phys ; 24(47): 28700-28781, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36269074

RESUMO

In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.


Assuntos
Ciência dos Materiais , Humanos
6.
J Chem Phys ; 155(5): 054107, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364354

RESUMO

Fractional-spin errors are inherent in all current approximate density functionals, including Hartree-Fock theory, and their origin has been related to strong static correlation effects. The conventional way to encode fractional-spin calculations is to construct an ensemble density that scales between the high-spin and low-spin densities. In this article, we explore the variation of the Hartree-Fock fractional-spin (or ghost-interaction) error in one-electron systems using restricted and unrestricted ensemble densities and the exact generalized Hartree-Fock representation. By considering the hydrogen atom and H+ 2 cation, we analyze how the unrestricted and generalized Hartree-Fock schemes minimize this error by localizing the electrons or rotating the spin coordinates. We also reveal a clear similarity between the Coulomb hole of He-like ions and the density depletion near the nucleus induced by the fractional-spin error in the unpolarized hydrogen atom. Finally, we analyze the effect of the fractional-spin error on the Møller-Plesset adiabatic connection, excited states, and functional- and density-driven errors.

7.
Faraday Discuss ; 224(0): 145-165, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32969448

RESUMO

We analyse a path to construct density functionals for the dispersion interaction energy from an expression in terms of the ground state densities and exchange-correlation holes of the isolated fragments. The expression is based on a constrained search formalism for a supramolecular wavefunction that is forced to leave the diagonal of the many-body density matrix of each fragment unchanged, and is exact for the interaction between one-electron densities. We discuss several aspects: the necessary features of a density functional approximation for the exchange-correlation holes of the monomers, the optimal choice of the one-electron basis (named "dispersals"), and the functional derivative with respect to monomer density variations.

8.
J Phys Chem A ; 124(12): 2473-2482, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32118422

RESUMO

We analyze in depth two widely used definitions (from the theory of conditional probability amplitudes and from the adiabatic connection formalism) of the exchange-correlation energy density and of the response potential of Kohn-Sham density functional theory. We introduce a local form of the coupling-constant-dependent Hohenberg-Kohn functional, showing that the difference between the two definitions is due to a corresponding local first-order term in the coupling constant, which disappears globally (when integrated over all space), but not locally. We also design an analytic representation for the response potential in the strong-coupling limit of density functional theory for a model single stretched bond.

9.
J Chem Phys ; 153(21): 214112, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291899

RESUMO

We study in detail the first three leading terms of the large coupling-strength limit of the adiabatic connection that has as weak-interaction expansion the Møller-Plesset perturbation theory. We first focus on the H atom, both in the spin-polarized and the spin-unpolarized cases, reporting numerical and analytical results. In particular, we derive an asymptotic equation that turns out to have simple analytical solutions for certain channels. The asymptotic H atom solution for the spin-unpolarized case is then shown to be variationally optimal for the many-electron spin-restricted closed-shell case, providing expressions for the large coupling-strength density functionals up to the third leading order. We also analyze the H2 molecule and the uniform electron gas.

10.
J Chem Phys ; 149(24): 241101, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30599697

RESUMO

We show that the leading term in the strong-interaction limit of the adiabatic connection that has as weak-interaction expansion the Møller-Plesset perturbation theory can be fully determined from a functional of the Hartree-Fock density. We analyze this functional and highlight similarities and differences with the strong-interaction limit of the density-fixed adiabatic connection case of Kohn-Sham density functional theory.

11.
J Chem Phys ; 148(13): 134106, 2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29626908

RESUMO

The performance of functionals based on the idea of interpolating between the weak- and the strong-interaction limits the global adiabatic-connection integrand is carefully studied for the challenging case of noble-metal clusters. Different interpolation formulas are considered and various features of this approach are analyzed. It is found that these functionals, when used as a correlation correction to Hartree-Fock, are quite robust for the description of atomization energies, while performing less well for ionization potentials. Future directions that can be envisaged from this study and a previous one on main group chemistry are discussed.

12.
Theor Chem Acc ; 137(12): 166, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30464722

RESUMO

Interpolating the exchange-correlation energy along the density-fixed adiabatic connection of density functional theory is a promising way to build approximations that are not biased toward the weakly correlated regime. These interpolations can be performed at the global (integrated over all spaces) or at the local level, using energy densities. Many features of the relevant energy densities as well as several different ways to construct these interpolations, including comparisons between global and local variants, are investigated here for the analytically solvable Hooke's atom series, which allows for an exploration of different correlation regimes. We also analyze different ways to define the correlation kinetic energy density, focusing on the peak in the kinetic correlation potential.

13.
Phys Chem Chem Phys ; 19(8): 6169-6183, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28230218

RESUMO

We investigate the construction of approximated exchange-correlation functionals by interpolating locally along the adiabatic connection between the weak- and the strong-coupling regimes, focussing on the effect of using approximate functionals for the strong-coupling energy densities. The gauge problem is avoided by dealing with quantities that are all locally defined in the same way. Using exact ingredients at weak coupling we are able to isolate the error coming from the approximations at strong coupling only. We find that the nonlocal radius model, which retains some of the non-locality of the exact strong-coupling regime, yields very satisfactory results. We also use interpolation models and quantities from the weak- and strong-coupling regimes to define a correlation-type indicator and a lower bound to the exact exchange-correlation energy. Open problems, related to the nature of the local and global slope of the adiabatic connection at weak coupling, are also discussed.

14.
J Chem Phys ; 147(21): 214107, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29221411

RESUMO

The augmented potential introduced by Levy and Zahariev [Phys. Rev. Lett. 113, 113002 (2014)] is shifted with respect to the standard exchange-correlation potential of the Kohn-Sham density functional theory by a density-dependent constant that makes the total energy become equal to the sum of the occupied orbital energies. In this work, we analyze several features of this approach, focusing on the limit of infinite coupling strength and studying the shift and the corresponding energy density at different correlation regimes. We present and discuss coordinate scaling properties of the augmented potential, study its connection to the response potential, and use the shift to analyze the classical jellium and uniform gas models. We also study other definitions of the energy densities in relation to the functional construction by local interpolations along the adiabatic connection. Our findings indicate that the energy density that is defined in terms of the electrostatic potential of the exchange-correlation hole is particularly well suited for this purpose.

15.
Phys Chem Chem Phys ; 18(31): 21092-101, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26986493

RESUMO

We investigate a number of formal properties of the adiabatic strictly-correlated electrons (SCE) functional, relevant for time-dependent potentials and for kernels in linear response time-dependent density functional theory. Among the former, we focus on the compliance to constraints of exact many-body theories, such as the generalised translational invariance and the zero-force theorem. Within the latter, we derive an analytical expression for the adiabatic SCE Hartree exchange-correlation kernel in one dimensional systems, and we compute it numerically for a variety of model densities. We analyse the non-local features of this kernel, particularly the ones that are relevant in tackling problems where kernels derived from local or semi-local functionals are known to fail.

17.
Phys Rev Lett ; 115(3): 033006, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26230790

RESUMO

We introduce a density functional formalism to study the ground-state properties of strongly correlated dipolar and ionic ultracold bosonic and fermionic gases, based on the self-consistent combination of the weak and the strong coupling limits. Contrary to conventional density functional approaches, our formalism does not require a previous calculation of the interacting homogeneous gas, and it is thus very suitable to treat systems with tunable long-range interactions. Because of its asymptotic exactness in the regime of strong correlation, the formalism works for systems in which standard mean-field theories fail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA