Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 206(6): 1266-1283, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33536254

RESUMO

The role of vaccine-induced anti-V2 Abs was tested in three protection experiments in rhesus macaques. In an experiment using immunogens similar to those in the RV144 vaccine trial (Anti-envelope [Env]), nine rhesus macaques were coimmunized with gp16092TH023 DNA and SIV gag and gp120A244 and gp120MN proteins. In two V2-focused experiments (Anti-V2 and Anti-V2 Mucosal), nine macaques in each group were immunized with V1V292TH023 DNA, V1V2A244 and V1V2CasaeA2 proteins, and cyclic V2CaseA2 peptide. DNA and protein immunogens, formulated in Adjuplex, were given at 0, 4, 12, and 20 weeks, followed by intrarectal SHIVBaL.P4 challenges. Peak plasma viral loads (PVL) of 106-107 copies/ml developed in all nine sham controls. Overall, PVL was undetectable in one third of immunized macaques, and two animals tightly controlled the virus with the Anti-V2 Mucosal vaccine strategy. In the Anti-Env study, Abs that captured or neutralized SHIVBaL.P4 inversely correlated with PVL. Conversely, no correlation with PVL was found in the Anti-V2 experiments with nonneutralizing plasma Abs that only captured virus weakly. Titers of Abs against eight V1V2 scaffolds and cyclic V2 peptides were comparable between controllers and noncontrollers as were Ab-dependent cellular cytotoxicity and Ab-dependent cell-mediated virus inhibition activities against SHIV-infected target cells and phagocytosis of gp120-coated beads. The Anti-Env experiment supports the role of vaccine-elicited neutralizing and nonneutralizing Abs in control of PVL. However, the two V2-focused experiments did not support a role for nonneutralizing V2 Abs alone in controlling PVL, as neither Ab-dependent cellular cytotoxicity, Ab-dependent cell-mediated virus inhibition, nor phagocytosis correlated inversely with heterologous SHIVBaL.P4 infection.


Assuntos
Vacinas contra a AIDS/imunologia , Infecções por HIV/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Vacinas contra a AIDS/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Modelos Animais de Doenças , Feminino , Produtos do Gene env/imunologia , Infecções por HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Imunogenicidade da Vacina , Macaca mulatta , Masculino , Fagocitose/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral
2.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29997214

RESUMO

Elucidating the structural basis of antibody (Ab) gene usage and affinity maturation of vaccine-induced Abs can inform the design of immunogens for inducing desired Ab responses in HIV vaccine development. Analyses of monoclonal Abs (MAbs) encoded by the same immunoglobulin genes at different stages of maturation can help to elucidate the maturation process. We have analyzed four human anti-V3 MAbs with the same VH1-3*01 and VL3-10*01 gene usage. Two MAbs, TA6 and TA7, were developed from a vaccinee in the HIV vaccine phase I trial DP6-001 with a polyvalent DNA prime/protein boost regimen, and two others, 311-11D and 1334, were developed from HIV-infected patients. The somatic hypermutation (SHM) rates in VH of vaccine-induced MAbs are lower than in chronic HIV infection-induced MAbs, while those in VL are comparable. Crystal structures of the antigen-binding fragments (Fabs) in complex with V3 peptides show that these MAbs bind the V3 epitope with a new cradle-binding mode and that the V3 ß-hairpin lies along the antigen-binding groove, which consists of residues from both heavy and light chains. Residues conserved from the germ line sequences form specific binding pockets accommodating conserved structural elements of the V3 crown hairpin, predetermining the Ab gene selection, while somatically mutated residues create additional hydrogen bonds, electrostatic interactions, and van der Waals contacts, correlating with an increased binding affinity. Our data provide a unique example of germ line sequences determining the primordial antigen-binding sites and SHMs correlating with affinity maturation of Abs induced by vaccine and natural HIV infection.IMPORTANCE Understanding the structural basis of gene usage and affinity maturation for anti-HIV-1 antibodies may help vaccine design and development. Antibodies targeting the highly immunogenic third variable loop (V3) of HIV-1 gp120 provide a unique opportunity for detailed structural investigations. By comparing the sequences and structures of four anti-V3 MAbs at different stages of affinity maturation but of the same V gene usage, two induced by vaccination and another two by chronic infection, we provide a fine example of how germ line sequence determines the essential elements for epitope recognition and how affinity maturation improves the antibody's recognition of its epitope.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/química , Anticorpos Anti-HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Formação de Anticorpos , Especificidade de Anticorpos , Cristalização , Genes de Imunoglobulinas , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/genética , Humanos , Ligação de Hidrogênio , Alinhamento de Sequência , Hipermutação Somática de Imunoglobulina , Vacinação
3.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28122974

RESUMO

In light of the weak or absent neutralizing activity mediated by anti-V2 monoclonal antibodies (MAbs), we tested whether they can mediate Ab-dependent cellular phagocytosis (ADCP), which is an important element of anti-HIV-1 immunity. We tested six anti-V2 MAbs and compared them with 21 MAbs specific for V3, the CD4-binding site (CD4bs), and gp41 derived from chronically HIV-1-infected individuals and produced by hybridoma cells. ADCP activity was measured by flow cytometry using uptake by THP-1 monocytic cells of fluorescent beads coated with gp120, gp41, BG505 SOSIP.664, or BG505 DS-SOSIP.664 complexed with MAbs. The measurement of ADCP activity by the area under the curve showed significantly higher activity of anti-gp41 MAbs than of the members of the three other groups of MAbs tested using beads coated with monomeric gp41 or gp120; anti-V2 MAbs were dominant compared to anti-V3 and anti-CD4bs MAbs against clade C gp120ZM109 ADCP activity mediated by V2 and V3 MAbs was positive against stabilized DS-SOSIP.664 trimer but negligible against SOSIP.664 targets, suggesting that a closed envelope conformation better exposes the variable loops. Two IgG3 MAbs against the V2 and V3 regions displayed dominant ADCP activity compared to a panel of IgG1 MAbs. This superior ADCP activity was confirmed when two of three recombinant IgG3 anti-V2 MAbs were compared to their IgG1 counterparts. The study demonstrated dominant ADCP activity of anti-gp41 against monomers but not trimers, with some higher activity of anti-V2 MAbs than of anti-V3 and anti-CD4bs MAbs. The ability to mediate ADCP suggests a mechanism by which anti-HIV-1 envelope Abs can contribute to protective efficacy.IMPORTANCE Anti-V2 antibodies (Abs) correlated with reduced risk of HIV-1 infection in recipients of the RV144 vaccine, suggesting that they play a protective role, but a mechanism providing such protection remains to be determined. The rare and weak neutralizing activities of anti-V2 MAbs prompted us to study Fc-mediated activities. We compared anti-V2 MAbs with other MAbs specific for V3, CD4bs, and gp41 for Ab-dependent cellular phagocytosis (ADCP) activity, implicated in protective immunity. The anti-V2 MAbs displayed stronger activity than other anti-gp120 MAbs in screening against one of two gp120s and against DS-SOSIP, which mimics the native trimer. The activity of anti-gp41 MAbs was superior in targeting monomeric gp41 but was comparable to that seen against trimers, which may not adequately expose gp41 epitopes. While anti-envelope MAbs in general mediated ADCP activity, anti-V2 MAbs displayed some dominance compared to other MAbs. Our demonstration that anti-V2 MAbs mediate ADCP activity suggests a functional mechanism for their contribution to protective efficacy.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Monócitos/imunologia , Fagocitose , Anticorpos Monoclonais/isolamento & purificação , Sítios de Ligação , Linhagem Celular , Citometria de Fluxo , Anticorpos Anti-HIV/isolamento & purificação , Humanos , Imunoglobulina G/imunologia
4.
J Clin Microbiol ; 55(9): 2785-2800, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28659324

RESUMO

The global intensification of antiretroviral therapy (ART) can lead to increased rates of HIV drug resistance (HIVDR) mutations in treated and also in ART-naive patients. ART-naive HIV-1-infected patients from Cameroon were subjected to a multimethod HIVDR analysis using amplification-refractory mutation system (ARMS)-PCR, Sanger sequencing, and longitudinal next-generation sequencing (NGS) to determine their profiles for the mutations K103N, Y181C, K65R, M184V, and T215F/Y. We processed 66 ART-naive HIV-1-positive patients with highly diverse subtypes that underlined the predominance of CRF02_AG and the increasing rate of F2 and other recombinant forms in Cameroon. We compared three resistance testing methods for 5 major mutation sites. Using Sanger sequencing, the overall prevalence of HIVDR mutations was 7.6% (5/66) and included all studied mutations except K65R. Comparing ARMS-PCR with Sanger sequencing as a reference, we obtained a sensitivity of 100% (5/5) and a specificity of 95% (58/61), caused by three false-positive calls with ARMS-PCR. For 32/66 samples, we obtained NGS data and we observed two additional mismatches made up of minority variants (7% and 18%) that might not be clinically relevant. Longitudinal NGS analyses revealed changes in HIVDR mutations in all five positive subjects that could not be attributed to treatment. In one of these cases, superinfection led to the temporary masking of a resistant virus. HIVDR mutations can be sensitively detected by ARMS-PCR and sequencing methods with comparable performances. Longitudinal changes in HIVDR mutations have to be considered even in the absence of treatment.


Assuntos
Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/genética , Adulto , Fármacos Anti-HIV/uso terapêutico , Sequência de Bases , Camarões , Feminino , Infecções por HIV/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação/genética , Reação em Cadeia da Polimerase/métodos , Inibidores da Transcriptase Reversa/uso terapêutico , Análise de Sequência de RNA
5.
J Virol ; 90(22): 10362-10378, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27630232

RESUMO

HIV-1 is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years of infection, and therefore, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that moderate protection is possible and that this protection may correlate with antibody-dependent cellular cytotoxicity (ADCC) activity. Our previous studies demonstrated that in an HIV vaccine phase I trial, the DP6-001 trial, a polyvalent Env DNA prime-protein boost formulation could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities. Here we report on the production and analysis of HIV-1 Env-specific human monoclonal antibodies (hMAbs) isolated from vaccinees in the DP6-001 trial. For this initial report, 13 hMAbs from four vaccinees in the DP6-001 trial showed broad binding to gp120 proteins of diverse subtypes both autologous and heterologous to vaccine immunogens. Equally cross-reactive Fc receptor-mediated functional activities, including ADCC and antibody-dependent cellular phagocytosis (ADCP) activities, were present with both immune sera and isolated MAbs, confirming the induction of nonneutralizing functional hMAbs by the DNA prime-protein boost vaccination. Elicitation of broadly reactive hMAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV vaccine design. IMPORTANCE: The roles of Fc receptor-mediated protective antibody responses are gaining more attention due to their potential contribution to the low-level protection against HIV-1 infection that they provided in the RV144 trial. At the same time, information about hMabs from other human HIV vaccine studies is very limited. In the current study, both immune sera and monoclonal antibodies from vaccinated humans showed not only high-level ADCC and ADCP activities but also cross-subtype ADCC and ADCP activities when a polyvalent DNA prime-protein boost vaccine formulation was used.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/imunologia , DNA/imunologia , HIV-1/imunologia , Receptores Fc/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/farmacocinética , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos de Bactérias/imunologia , Reações Cruzadas/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Humanos , Imunização Secundária/métodos , Vacinação/métodos , Vacinas de DNA/imunologia , Voluntários
6.
J Autoimmun ; 79: 99-104, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28118945

RESUMO

The detection of cardiac conduction defects in an 18-24 week old foetus in the absence of structural abnormalities predicts with near certainty the presence of autoantibodies against 60kD and 52kD SSA/Ro in the mother regardless of her health status. Previous studies have emphasized these autoantibodies as key mediators of tissue injury. The aim of this study was to focus on the anti-Ro52 response to determine whether these autoantibodies originate from progenitors that are inherently self-reactive or from B-cells that acquire self-reactivity during an immune response. We traced the evolution of two anti-Ro52 autoantibodies isolated from circulating IgG1-switched B-cells from an asymptomatic mother of a child with third degree congenital heart block. The autoantibodies were expressed as their immune form and as pre-immune ancestors by reverting somatic mutations to germline sequence. The reactivity of pre-immune and immune antibodies for Ro52, Ro60, La and DNA was measured. Both anti-Ro52 autoantibodies exhibited a low frequency of somatic mutations (3-4%) and utilised the same heavy and light chain genes but represented distinct clones based on differing complementarity determining region sequences. Pre- and post-immune antibodies showed specific binding to Ro52 with no measurable reactivity for other autoantigens. Ro52 binding was higher for immune antibodies compared to pre-immune counterparts demonstrating that autoreactivity was enhanced by affinity maturation. These data indicate that Ro52 reactivity is an intrinsic property of the germline antibody repertoire in a mother with a pathogenic antibody defined by cardiac injury in her offspring, and implies defects in both central and peripheral tolerance mechanisms.


Assuntos
Autoanticorpos/imunologia , Autoimunidade , Exposição Materna , Mães , Células Precursoras de Linfócitos B/imunologia , Ribonucleoproteínas/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Autoanticorpos/sangue , Autoanticorpos/química , Autoanticorpos/genética , Doenças Autoimunes/sangue , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Feminino , Humanos , Lactente , Lúpus Eritematoso Sistêmico/congênito , Células Precursoras de Linfócitos B/metabolismo , Hipermutação Somática de Imunoglobulina/genética
7.
J Virol ; 89(15): 8003-10, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018158

RESUMO

UNLABELLED: The region consisting of the first and second variable regions (V1V2) of gp120 plays vital roles in the functioning of the HIV-1 envelope (Env). V1V2, which harbors multiple glycans and is highly sequence diverse, is located at the Env apex and stabilizes the trimeric gp120 spike on the virion surface. It shields V3 and the coreceptor binding sites in the prefusion state and exposes them upon CD4 binding. Data from the RV144 human HIV-1 vaccine trial suggested that antibody responses targeting the V1V2 region inversely correlated with the risk of infection; thus, understanding the antigenic structure of V1V2 can contribute to vaccine design. We have determined a crystal structure of a V1V2 scaffold molecule (V1V2ZM109-1FD6) in complex with 830A, a human monoclonal antibody that recognizes a V1V2 epitope overlapping the integrin-binding motif in V2. The structure revealed that V1V2 assumes a five-stranded beta barrel structure with the region of the integrin-binding site (amino acids [aa] 179 to 181) included in a "kink" followed by an extra beta strand. The complete barrel structure naturally presents the glycans on its outer surface and packs into its core conserved hydrophobic residues, including the Ile at position 181 which was highly correlated with vaccine efficacy in RV144. The epitope of monoclonal antibody 830A is discontinuous and composed of three segments: (i) Thr175, Tyr177, Leu179, and Asp180 at the kink overlapping the integrin-binding site; (ii) Arg153 and Val154 in V1; and (iii) Ile194 at the C terminus of V2. This report thus provides the atomic details of the immunogenic "V2i epitope." IMPORTANCE: Data from the RV144 phase III clinical trial suggested that the presence of antibodies to the first and second variable regions (V1V2) of gp120 was associated with the modest protection afforded by the vaccine. V1V2 is a highly variable and immunogenic region of HIV-1 surface glycoprotein gp120, and structural information about this region and its antigenic landscape will be crucial in the design of an effective HIV-1 vaccine. We have determined a crystal structure of V1V2 in complex with human MAb 830A and have shown that MAb 830A recognizes a region overlapping the α4ß7 integrin-binding site. We also showed that V1V2 forms a 5-stranded beta barrel, an elegant structure allowing sequence variations in the strand-connecting loops while preserving a conserved core.


Assuntos
Proteína gp120 do Envelope de HIV/química , Infecções por HIV/virologia , HIV-1/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Humanos , Dados de Sequência Molecular , Estrutura Secundária de Proteína
8.
J Virol ; 89(17): 9090-102, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26109728

RESUMO

UNLABELLED: The V3 region of HIV-1 gp120 is important for virus-coreceptor interaction and highly immunogenic. Although most anti-V3 antibodies neutralize only the sensitive tier 1 viruses, anti-V3 antibodies effective against the more resistant viruses exist, and a better understanding of these antibodies and their epitopes would be beneficial for the development of novel vaccine immunogens against HIV. The HIV-1 isolate JRFL with its cryptic V3 is resistant to most V3-specific monoclonal antibodies (MAbs). However, the V3 MAb 2424 achieves 100% neutralization against JRFL. 2424 is encoded by IGHV3-53 and IGLV2-28 genes, a pairing rarely used by the other V3 MAbs. 2424 also has distinct binding and neutralization profiles. Studies of 2424-mediated neutralization of JRFL produced with a mannosidase inhibitor further revealed that its neutralizing activity is unaffected by the glycan composition of the virus envelope. To understand the distinct activity of 2424, we determined the crystal structure of 2424 Fab in complex with a JRFL V3 peptide and showed that the 2424 epitope is located at the tip of the V3 crown ((307)IHIGPGRAFYT(319)), dominated by interactions with His(P308), Pro(P313), and Arg(P315). The binding mode of 2424 is similar to that of the well-characterized MAb 447-52D, although 2424 is more side chain dependent. The 2424 epitope is focused on the very apex of V3, away from nearby glycans, facilitating antibody access. This feature distinguishes the 2424 epitope from the other V3 crown epitopes and indicates that the tip of V3 is a potential site to target and incorporate into HIV vaccine immunogens. IMPORTANCE: HIV/AIDS vaccines are crucial for controlling the HIV epidemics that continue to afflict millions of people worldwide. However, HIV vaccine development has been hampered by significant scientific challenges, one of which is the inability of HIV vaccine candidates evaluated thus far to elicit production of potent and broadly neutralizing antibodies. The V3 loop is one of the few immunogenic targets on the virus envelope glycoprotein that can induce neutralizing antibodies, but in many viruses, parts of V3 are inaccessible for antibody recognition. This study examined a V3-specific monoclonal antibody that can completely neutralize HIV-1 JRFL, a virus isolate resistant to most V3 antibodies. Our data reveal that this antibody recognizes the most distal tip of V3, which is not as occluded as other parts of V3. Hence, the epitope of 2424 is in one of the vulnerable sites on the virus that may be exploited in designing HIV vaccine immunogens.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/ultraestrutura , Especificidade de Anticorpos/imunologia , Linhagem Celular , Cristalografia por Raios X , Epitopos/imunologia , Células HEK293 , Antígenos HIV/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Manosidases/antagonistas & inibidores , Dados de Sequência Molecular , Polissacarídeos/imunologia , Estrutura Terciária de Proteína
9.
J Virol ; 88(8): 4100-12, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24478429

RESUMO

UNLABELLED: Data from the RV144 HIV vaccine trial indicated that gp120 V2 antibodies were associated with a lower risk of infection; thus, the mapping of V2 epitopes can contribute to the design of an effective HIV vaccine. We solved the crystal structure of human monoclonal antibody (MAb) 2158, which targets a conformational V2 epitope overlapping the α4ß7 integrin binding site, and constructed a full-length model of V1V2. Comparison of computational energy stability to experimental enzyme-linked immunosorbent assay (ELISA) results identified a hydrophobic core that stabilizes the V2 region for optimal 2158 binding, as well as residues that directly mediate side chain interactions with MAb 2158. These data define the binding surface recognized by MAb 2158 and offer a structural explanation for why a mismatched mutation at position 181 (I181X) in the V2 loop was associated with a higher vaccine efficiency in the RV144 clinical vaccine trial. IMPORTANCE: Correlate analysis of the RV144 HIV-1 vaccine trial suggested that the presence of antibodies to the second variable region (V2) of HIV-1 gp120 was responsible for the modest protection observed in the trial. V2 is a highly variable and immunogenic region, and structural information on its antigenic landscape will be important for rational design of an effective HIV-1 vaccine. Using X-ray crystallography, computational design tools, and mutagenesis assays, we carried out a detailed and systematic investigation of the epitope recognition of human V2 MAb 2158 and demonstrated that its epitope region overlaps the integrin binding site within V2. In addition, we propose a structure-based mechanism for mismatching of the isoleucine at position 181 and the increased vaccine efficacy seen in the RV144 vaccine trial.


Assuntos
Vacinas contra a AIDS/química , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Sequência de Aminoácidos , Anticorpos Anti-HIV/genética , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência
10.
J Virol ; 88(21): 12853-65, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25165106

RESUMO

UNLABELLED: Broadly neutralizing antibodies targeting the HIV-1 envelope (Env) are key components for protection against HIV-1. However, many cross-reactive epitopes are often occluded. This study investigates the mechanisms contributing to the masking of V2i (variable loop V2 integrin) epitopes compared to the accessibility of V3 epitopes. V2i are conformation-dependent epitopes encompassing the integrin α4ß7-binding motif on the V1V2 loop of HIV-1 Env gp120. The V2i monoclonal antibodies (MAbs) display extensive cross-reactivity with gp120 monomers from many subtypes but neutralize only few viruses, indicating V2i's cryptic nature. First, we asked whether CD4-induced Env conformational changes affect V2i epitopes similarly to V3. CD4 treatment of BaL and JRFL pseudoviruses increased their neutralization sensitivity to V3 MAbs but not to the V2i MAbs. Second, the contribution of N-glycans in masking V2i versus V3 epitopes was evaluated by testing the neutralization of pseudoviruses produced in the presence of a glycosidase inhibitor, kifunensine. Viruses grown in kifunensine were more sensitive to neutralization by V3 but not V2i MAbs. Finally, we evaluated the time-dependent dynamics of the V2i and V3 epitopes. Extending the time of virus-MAb interaction to 18 h before adding target cells increased virus neutralization by some V2i MAbs and all V3 MAbs tested. Consistent with this, V2i MAb binding to Env on the surface of transfected cells also increased in a time-dependent manner. Hence, V2i and V3 epitopes are highly dynamic, but distinct factors modulate the antibody accessibility of these epitopes. The study reveals the importance of the structural dynamics of V2i and V3 epitopes in determining HIV-1 neutralization by antibodies targeting these sites. IMPORTANCE: Conserved neutralizing epitopes are present in the V1V2 and V3 regions of HIV-1 Env, but these epitopes are often occluded from Abs. This study reveals that distinct mechanisms contribute to the masking of V3 epitopes and V2i epitopes in the V1V2 domain. Importantly, V3 MAbs and some V2i MAbs display greater neutralization against relatively resistant HIV-1 isolates when the MAbs interact with the virus for a prolonged period of time. Given their highly immunogenic nature, V3 and V2i epitopes are valuable targets that would augment the efficacy of HIV vaccines.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Linhagem Celular , Anticorpos Anti-HIV/metabolismo , Humanos , Testes de Neutralização , Ligação Proteica
11.
J Virol ; 88(5): 2489-507, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352443

RESUMO

UNLABELLED: Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world. IMPORTANCE: An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit broadly cross-reactive neutralizing antibodies that will protect against infection by most circulating strains of the virus are guided in part by in vitro assays that determine the ability of vaccine-elicited antibodies to neutralize genetically diverse HIV-1 variants. Until now, little information was available on how many and which strains of the virus are best suited for this purpose. We applied robust statistical methods to evaluate a large neutralization data set and identified a small panel of viruses that are a good representation of the global epidemic. The neutralization properties of this new panel of reference strains should facilitate the development of an effective HIV-1 vaccine.


Assuntos
Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/normas , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Sequência de Aminoácidos , Especificidade de Anticorpos/imunologia , Linhagem Celular , Análise por Conglomerados , Reações Cruzadas/imunologia , Epitopos/imunologia , HIV-1/classificação , HIV-1/genética , Humanos , Dados de Sequência Molecular , Testes de Neutralização/normas , Filogenia , Receptores de HIV , Reprodutibilidade dos Testes , Alinhamento de Sequência , Tropismo Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
12.
Biochemistry ; 52(36): 6249-57, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23944979

RESUMO

The third variable region (V3) of HIV-1 gp120 plays a key role in viral entry into host cells; thus, it is a potential target for vaccine design. Human monoclonal antibody (mAb) 447-52D is one of the most broadly and potently neutralizing anti-V3 mAbs. We further characterized the 447-52D epitope by determining a high-resolution crystal structure of the Fab fragment in complex with a cyclic V3 and interrogated the antigen-antibody interaction by a combination of site-specific mutagenesis, isothermal titration calorimetry (ITC) and neutralization assays. We found that 447-52D's neutralization capability is correlated with its binding affinity and at 25 °C the Gibbs free binding energy is composed of a large enthalpic component and a small favorable entropic component. The large enthalpic contribution is due to (i) an extensive hydrogen bond network, (ii) a π-cation sandwiching the V3 crown apex residue Arg(315), and (iii) a salt bridge between the 447-52D heavy chain residue Asp(H95) and Arg(315). Arg(315) is often harbored by clade B viruses; thus, our data explained why 447-52D preferentially neutralizes clade B viruses. Interrogation of the thermodynamic signatures of residues at the antigen binding interface gives key insights into their contributions in the antigen-antibody interaction.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Reações Antígeno-Anticorpo , Sítios de Ligação de Anticorpos/imunologia , Cristalografia por Raios X , Epitopos/imunologia , HIV-1/imunologia , Humanos , Ligação de Hidrogênio , Fragmentos Fab das Imunoglobulinas/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Testes de Neutralização , Termodinâmica
13.
J Virol ; 85(20): 10730-40, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21835798

RESUMO

A series of potently neutralizing monoclonal antibodies (MAbs) that target quaternary epitopes on the native Env trimer have recently been described. A common feature shared by these antibodies is the critical involvement of sites in both the V2 and V3 variable domains in antibody recognition. In this study the gp120 variable-region determinants were mapped for eight rhesus macaque monoclonal antibodies (RhMAbs) possessing potently neutralizing activity specific for a quaternary target in SF162 Env and compared to those originally identified for human MAb 2909. These studies showed that determinants for the epitopes defined by the RhMAbs differed in both the V2 (positions 160, 167, and 169) and V3 (positions 313 and 315) regions from 2909, and in a number of cases, from each other. Attempts to reconstitute expression of these epitopes on the cell surface by cotransfecting Envs containing either the V2 or the V3 determinant of the epitope were not successful, suggesting that these epitopes were expressed on individual protomers in a trimer-dependent manner. Several of the V2 positions found to be critical for expression of these quaternary epitopes also significantly affected exposure and neutralization sensitivity of targets in the V3 and CD4-binding domains. These results demonstrated a considerable diversity in the fine structure of this class of epitopes and further suggested a potentially important relationship between the expression of such quaternary epitopes and V1/V2-mediated masking of immunodominant epitopes.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Variação Genética , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Sequência de Aminoácidos , Animais , Mapeamento de Epitopos , Epitopos/genética , Proteína gp120 do Envelope de HIV/genética , Humanos , Macaca mulatta , Dados de Sequência Molecular , Testes de Neutralização
14.
J Virol ; 85(9): 4578-85, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21325411

RESUMO

HIV-1 is neutralized by a class of antibodies that preferentially recognize a site formed on the assembled viral spike. Such quaternary structure-specific antibodies have diverse neutralization breadths, with antibodies PG16 and PG9 able to neutralize 70 to 80% of circulating HIV-1 isolates while antibody 2909 is specific for strain SF162. We show that alteration between a rare lysine and a common N-linked glycan at position 160 of HIV-1 gp120 is primarily responsible for toggling between 2909 and PG16/PG9 neutralization sensitivity. Quaternary structure-specific antibodies appear to target antigenic variants of the same epitope, with neutralization breadth determined by the prevalence of recognized variants among circulating isolates.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Epitopos/genética , Epitopos/imunologia , Glicosilação , Lisina/metabolismo
15.
J Virol ; 85(3): 1340-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21106741

RESUMO

HIV-1 gp41 envelope antibodies, which are frequently induced in HIV-1-infected individuals, are predominantly nonneutralizing. The rare and difficult-to-induce neutralizing antibodies (2F5 and 4E10) that target gp41 membrane-proximal epitopes (MPER) are polyspecific and require lipid binding for HIV-1 neutralization. These results raise the questions of how prevalent polyreactivity is among gp41 antibodies and how the binding properties of gp41-nonneutralizing antibodies differ from those of antibodies that are broadly neutralizing. In this study, we have characterized a panel of human gp41 antibodies with binding specificities within the immunodominant cluster I (gp41 amino acids [aa] 579 to 613) or cluster II (gp41 aa 644 to 667) for reactivity to autoantigens, to the gp140 protein, and with MPER peptide-lipid conjugates. We report that while none of the gp41 cluster I antibodies studied were polyspecific, all three gp41 cluster II antibodies bound either to lipids or autoantigens, thus showing the propensity of cluster II antibodies to manifest polyreactivity. All cluster II gp41 monoclonal antibodies (MAbs), including those that were lipid reactive, failed to bind to gp41 MPER peptide-lipid complexes. Cluster II antibodies bound strongly with nanomolar binding affinity (dissociation constant [K(d)]) to oligomeric gp140 proteins, and thus, they recognize conformational epitopes on gp41 that are distinct from those of neutralizing gp41 antibodies. These results demonstrate that lipid-reactive gp41 cluster II antibodies are nonneutralizing due to their inability to bind to the relevant neutralizing epitopes on gp41.


Assuntos
Anticorpos Monoclonais/imunologia , Autoantígenos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Fosfolipídeos/imunologia , Humanos , Cinética , Ligação Proteica
16.
J Virol ; 85(6): 2524-35, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21191009

RESUMO

Monoclonal antibody 2909 belongs to a class of potently neutralizing antibodies that recognize quaternary epitopes on HIV-1. Some members of this class, such as 2909, are strain specific, while others, such as antibody PG16, are broadly neutralizing; all, however, recognize a region on the gp120 envelope glycoprotein that includes two loops (V2 and V3) and forms appropriately only in the oligomeric HIV-1 spike (gp120(3)/gp41(3)). Here we present the crystal structure of 2909 and report structure-function analysis with antibody chimeras composed of 2909 and other members of this antibody class. The 2909 structure was dominated by a heavy-chain third-complementarity-determining region (CDR H3) of 21 residues, which comprised 36% of the combining surface and formed a ß-hairpin club extending ∼20 Å beyond the rest of the antibody. Sequence analysis and mass spectrometry identified sites of tyrosine sulfation at the middle and top of CDR H3; substitutions with phenylalanine either ablated (middle substitution) or substantially diminished (top substitution) neutralization. Chimeric antibodies composed of heavy and light chains, exchanged between 2909 and other members of the class, indicated a substantial lack of complementation. Comparison of 2909 to PG16 (which is tyrosine sulfated and the only other member of the class for which a structure has previously been reported) showed that both utilize protruding, anionic CDR H3s for recognition. Thus, despite some diversity, members of this class share structural and functional similarities, with conserved features of the CDR H3 subdomain likely reflecting prevalent solutions by the human immune system for recognition of a quaternary site of HIV-1 vulnerability.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Anticorpos Anti-HIV/química , HIV-1/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Cristalografia por Raios X , Anticorpos Anti-HIV/imunologia , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Análise de Sequência de DNA
17.
J Virol ; 84(7): 3443-53, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20106929

RESUMO

Monoclonal antibodies (MAbs) that neutralize human immunodeficiency virus type 1 (HIV-1) have been isolated from HIV-1-infected individuals or animals immunized with recombinant HIV-1 envelope (Env) glycoprotein constructs. The epitopes of these neutralizing antibodies (NAbs) were shown to be located on either the variable or conserved regions of the HIV-1 Env and to be linear or conformational. However, one neutralizing MAb, 2909, which was isolated from an HIV-1-infected subject, recognizes a more complex, quaternary epitope that is present on the virion-associated functional trimeric Env spike of the SF162 HIV-1 isolate. Here, we discuss the isolation of 11 anti-HIV NAbs that were isolated from three rhesus macaques infected with the simian/human immunodeficiency virus SHIV(SF162P4) and that also recognize quaternary epitopes. A detailed epitope mapping analysis of three of these rhesus antibodies revealed that their epitopes overlap that of the human MAb 2909. Despite this overall similarity in binding, however, differences in specific amino acid and glycosylation pattern requirements for MAb 2909 and the rhesus MAbs were identified. These results highlight similarities in the B-cell responses of humans and macaques to structurally complex neutralization epitopes on related viruses, HIV-1 and SHIV.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Substituição de Aminoácidos , Animais , Epitopos , Produtos do Gene env/química , Produtos do Gene env/imunologia , Glicosilação , Humanos , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírion/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
18.
Vaccine ; 39(39): 5607-5614, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34400018

RESUMO

The repertoire of antibodies (Abs) produced upon vaccination against a particular antigenic site is rarely studied due to the complexity of the immunogens. We received such an opportunity when one rhesus macaque was immunized six times at 0, 4, 10, 16, 32, and 143 weeks with C4-447 peptide containing the 8-mer epitope for human monoclonal Ab (mAb) 447-52D specific to the V3 region of gp120 HIV-1. Strong anti-V3 antibody responses reached 50% binding titer in serum of 10-5 at week 10 that declined to 10-3 by week 70. After an additional boost of C4-447 peptide at week 143, titers rebounded to 10-5 at week 146, or 2.7 years after the first immunization. Using the blood sample at week 146, we produced 41 V3-specific recombinant mAbs by single B cell isolation and cloning. Sequence analysis revealed 21B cell lineages, single and clonally related, based on immunoglobulin gene usage and CDR3s. The broad repertoire of Abs directed to a small antigenic site shows the targeting potency of a vaccine-elicited immune response in rhesus macaques.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Animais , Anticorpos Neutralizantes , Linhagem da Célula , Epitopos , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV , Humanos , Macaca mulatta
19.
Hum Immunol ; 82(12): 923-929, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34340867

RESUMO

We studied the contribution of the light chain to functions of human monoclonal antibodies (mAbs) by measuring the relationships between the rate of mutations and cross-reactivity, binding affinity and neutralization activity. We analyzed 12 mAbs of two clonal families specific to the V2 region of HIV-1 derived from two chronically HIV-1 infected individuals. The clonal mAbs exhibited a range of reactivities, and the clones with superior properties were associated with the rate of mutations and the presence of particular mutated residues in the light chains, but not in the heavy chains. Our observations suggest that for some antibodies, the light chains play a vital role in antibody evolution toward more efficient ones and also suggest the importance of optimal residues rather than the rate of mutations in the variable fragment of the antibody.


Assuntos
Anticorpos Monoclonais , Anticorpos Anti-HIV , Infecções por HIV , HIV-1/imunologia , Cadeias Leves de Imunoglobulina , Região Variável de Imunoglobulina , Adulto , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Feminino , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/genética , Humanos , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Masculino
20.
Mol Immunol ; 46(5): 917-26, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18952295

RESUMO

Human anti-V3 monoclonal antibodies (mAbs) generated from HIV-1 infected individuals display diversity in the range of their cross-neutralization that may be related to their immunogenetic background. The study of the immunoglobulin (Ig) variable region gene usage of heavy chains have shown a preferential usage of the VH5-51 gene segment which was detected in 35% of 51 human anti-V3 mAbs. In contrast, human mAbs against other envelope regions of HIV-1 (anti-Env), including the CD4-binding domain, the CD4-induced epitope, and gp41 preferentially used the VH1-69 gene segment, and none of them used the VH5-51 gene. Furthermore, the usage of the VH4 family by anti-V3 mAbs was restricted to only one gene segment, VH4-59, while the VH3 gene family was used at a significantly lower frequency by all of the analyzed anti-HIV-1 mAbs. Multivariate analysis showed that usage of VH gene segments was significantly different between anti-V3 and anti-Env mAbs, and compared to antibodies from healthy subjects. In addition, the anti-V3 mAbs preferentially used the JH3 and D2-15 gene segments. The preferential usage of selected Ig gene segments and the characteristic pattern of Ig gene usage by anti-V3 mAbs can be related to the conserved structure of the V3 region.


Assuntos
Anticorpos Monoclonais/genética , Anticorpos Antivirais/genética , Especificidade de Anticorpos/genética , Epitopos/genética , Proteína gp41 do Envelope de HIV , Infecções por HIV/genética , HIV-1 , Região Variável de Imunoglobulina/genética , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , Epitopos/imunologia , Infecções por HIV/imunologia , Humanos , Região Variável de Imunoglobulina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA