Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202899

RESUMO

MXenes are two-dimensional (2D) materials with a great potential for sensor applications due to their high aspect ratio and fully functionalized surface that can be tuned for specific gas adsorption. Here, we demonstrate that the Nb2CTz-based sensor exhibits high performance towards alcohol vapors at temperatures up to 300-350 °C, with the best sensitivity towards ethanol. We attribute the observed remarkable chemiresistive effect of this material to the formation of quasi-2D Nb2O5 sheets as the result of the oxidation of Nb-based MXenes. These findings are supported by synchrotron X-ray photoelectron spectroscopy studies together with X-ray diffraction and electron microscopy observations. For analyte selectivity, we employ a multisensor approach where the gas recognition is achieved by linear discriminant analysis of the vector response of the on-chip sensor array. The reported protocol demonstrates that MXene layers are efficient precursors for the derivation of 2D oxide architectures, which are suitable for developing gas sensors and sensor arrays.

2.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513337

RESUMO

The xerogels based on the aqueous solutions of urea in potassium silicate liquid glass (PSLG) were produced by CO2 bubbling and investigated. The structure and chemical composition of the obtained materials were analyzed. Using the SEM, XRD, IR-FT, DSC, and low energy local EDS analysis, it was recognized that the dried gels (xerogels) contained three forms of urea: oval crystals of regular shape appeared onto the surface of xerogel particles; fibrous crystals were located in the silicate matrix; and molecules/ions were incorporated into the silicate matrix. It was shown that an increase in [(NH2)2CO] in the gel-forming system promoted increased contents in crystalline forms of urea as well as the diameter of the fiber-shaped urea crystals. A rate of the urea release in water from the granulated xerogels containing 5.8, 12.6, and 17.9 wt.% of urea was determined by the photometric method. It was determined that the obtained urea-containing xerogels were characterized with a slow release of urea, which continued up to 120 days, and could be used as controlled release fertilizers containing useful nutrients (N, K).

3.
Molecules ; 28(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446607

RESUMO

It is shown that the potassium polytitanate powder (PPT) synthesized at 500 °C via the treatment of powdered TiO2 (rutile) in molten mixtures of KOH and KNO3 is a cheap and effective catalyst of H2O2 chemical decomposition in aqueous solutions. At the same time, the PPT catalytic activity strongly depends on the [TiO2]:[KOH]:[KNO3] weight ratio in the mixture used for the synthesis, increasing with [KNO3] in the order of PPT (30:30:40) < PPT (30:50:20) < PPT (30:70:0). The obtained results are explained by increased [Ti3+] in the PPT structure (XPS data), which is grown in this order from 0 to 4.0 and 21.9 at.%, respectively, due to the reduced oxidation activity of the melt used for PPT synthesis. The mechanism of the autocatalytic process taking place in the PPT-H2O2-H2O system is analyzed. Taking into account the data of FT-IR spectroscopy, it is assumed that the increased catalytic activity of the investigated materials is related to the increased surface concentration of the Ti4+-O(H)-Ti4+ groups, formed from the Ti3+-O(H3O+)-Ti4+ clusters and further transformed into Ti-O-O-H catalytic centers. Some possible applications of the PPT-H2O2-H2O catalytic system, including the oxidation processes of green chemistry and photo-catalysis, are discussed.


Assuntos
Peróxido de Hidrogênio , Titânio , Peróxido de Hidrogênio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/química , Água , Cloreto de Sódio , Cloreto de Sódio na Dieta , Catálise
4.
Dalton Trans ; 53(13): 5922-5931, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38456352

RESUMO

MXenes are a group of two-dimensional materials that are promising for many applications, including as film electrode supercapacitors. When synthesizing such materials, special attention is paid to the conditions for obtaining the MAX phase, the chemical, morphological and structural features of which determine the functional properties of the final product. In this study, the Ti3AlC2 precursor is proposed to be obtained using a technologically simple and accessible method of synthesis in molten salt. This method allows reducing the reaction temperature and creating an antioxidant atmosphere. Ti3C2Tx MXene electrode films are produced by the easily scalable blade coating method without a binder. The synthesized materials were studied by X-ray phase analysis and scanning electron microscopy. Electrochemical testing of Ti3C2Tx film electrodes was carried out in a three-electrode configuration in aqueous solutions of 1M H2SO4, 6M KOH, 1M LiOH and 1M Na2SO4 electrolytes. The maximum specific capacity value for Ti3C2Tx MXene binder-free film electrode supercapacitors is obtained in 1M H2SO4 electrolyte (480 F g-1 at a scan rate of 1 mV s-1). The simple, low-cost and scalable production technology and promising electrochemical characteristics of the Ti3C2Tx MXene binder-free film electrode make it an excellent candidate for new-generation supercapacitors.

5.
Polymers (Basel) ; 16(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257024

RESUMO

Three-phase polymer composites are promising materials for creating electronic device components. The qualitative and quantitative composition of such composites has a significant effect on their functional, in particular dielectric properties. In this study, ceramic filler K2Ni0.93Ti7.07O16 (KNTO) with Ag coating as conductive additive (0.5, 1.0, 2.5 wt.%) was introduced into the polyvinylidene difluoride (PVDF) polymer matrix in amounts of 7.5, 15, 22.5, and 30 vol.%. to optimize the dielectric constant and dielectric loss tangent. The filler was characterized by X-ray phase analysis, Fourier-transform infrared spectroscopy and Scanning electron microscopy methods. The dielectric constant, dielectric loss tangent, and conductivity of three-phase composites KNTO@Ag-PVDF were studied in comparison with two-phase composites KNTO-PVDF in the frequency range from 102 Hz to 106 Hz. The dielectric constant values of composites containing 7.5, 15, 22.5, and 30 vol.% filler were 12, 13, 17.4, 19.2 for pure KNTO and 13, 19, 25, 31 for KNTO@Ag filler (2.5 wt.%) at frequency 10 kHz. The dielectric loss tangent ranged from 0.111 to 0.340 at a filler content of 7.5 to 30 vol.%. A significantly enhanced balance of dielectric properties of PVDF-based composites was found with K2Ni0.93Ti7.07O16 as ceramic filler for 1 wt.% of silver. Composites KNTO@Ag(1 wt.%)-PVDF can be applied as dielectrics for passive elements of flexible electronics.

6.
Nanomaterials (Basel) ; 13(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110921

RESUMO

In this study, we report the effect of intercalation of dimethyl sulfoxide (DMSO) and urea molecules into the interlayer space of Ti3C2Tx MXene on the dielectric properties of poly(vinylidene fluoride) (PVDF)/MXene polymer nanocomposites. MXenes were obtained by a simple hydrothermal method using Ti3AlC2 and a mixture of HCl and KF, and they were then intercalated with DMSO and urea molecules to improve the exfoliation of the layers. Then, nanocomposites based on a PVDF matrix loading of 5-30 wt.% MXene were fabricated by hot pressing. The powders and nanocomposites obtained were characterized by using XRD, FTIR, and SEM. The dielectric properties of the nanocomposites were studied by impedance spectroscopy in the frequency range of 102-106 Hz. As a result, the intercalation of MXene with urea molecules made it possible to increase the permittivity from 22 to 27 and to slightly decrease the dielectric loss tangent at a filler loading of 25 wt.% and a frequency of 1 kHz. The intercalation of MXene with DMSO molecules made it possible to achieve an increase in the permittivity up to 30 at a MXene loading of 25 wt.%, but the dielectric loss tangent was increased to 0.11. A discussion of the possible mechanisms of MXene intercalation influence on the dielectric properties of PVDF/Ti3C2Tx MXene nanocomposites is presented.

7.
Micromachines (Basel) ; 14(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37421083

RESUMO

Low-temperature (350 °C) vitrification in a KNO3-NaNO3-KHSO4-NH4H2PO4 system, containing various additives to improve the chemical durability of the obtained material, was investigated. It was shown that a glass-forming system with 4.2-8.4 wt.% Al nitrate admixtures could form stable and transparent glasses, whereas the addition of H3BO3 produced a glass-matrix composite containing BPO4 crystalline inclusions. Mg nitrate admixtures inhibited the vitrification process and only allowed obtaining glass-matrix composites with combinations with Al nitrate and boric acid. Using ICP and low-energy EDS point analyses, it was recognized that all the obtained materials contained nitrate ions in their structure. Various combinations of the abovementioned additives favored liquid phase immiscibility and crystallization of BPO4, KMgH(PO3)3, with some unidentified crystalline phases in the melt. The mechanism of the vitrification processes taking place in the investigated systems, as well as the water resistance of the obtained materials, was analyzed. It was shown that the glass-matrix composites based on the (K,Na)NO3-KHSO4-P2O5 glass-forming system, containing Al and Mg nitrates and B2O3 additives, had increased water resistance, in comparison with the parent glass composition, and could be used as controlled-release fertilizers containing the main useful nutrients (K, P, N, Na, S, B, and Mg).

8.
Appl Opt ; 51(16): 3675-83, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22695609

RESUMO

Extinction enhancement and nonlinear near-resonant absorption of potassium polytitanate nanoplatelets were experimentally studied in the near-UV region. Phenomenological models such as the one-oscillator Lorentz model for dielectric function and the two-level model with the depleted ground state were used to interpret the experimental data. The introduced model parameters demonstrate the adequately high sensitivity to variations in nanoplatelet morphology and chemical environment.


Assuntos
Modelos Teóricos , Nanopartículas/química , Titânio/química , Absorção , Algoritmos , Luz , Espalhamento de Radiação , Espectrofotometria Ultravioleta/métodos
9.
Polymers (Basel) ; 14(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36235957

RESUMO

In this work, polymer matrix composites with the compositions PTFE/KFTO(H) and PTFE/KFTO(H)@CB and with filler volume fractions of 2.5, 5.0, 7.5, 15, and 30% (without and with carbon modification at a content of 2.5 wt.% regarding ceramic material) were produced by calendering and hot pressing and studied using FTIR, SEM, and impedance spectroscopy methods. Ceramic filler (KFTO(H)) was synthesized using the sol−gel Pechini method. Its structure was investigated and confirmed by the XRD method with following Rietveld refinement. The carbon black (CB) modification of KFTO(H) was carried out through the calcination of a mixture of ceramic and carbon materials in an argon atmosphere. Afterwards, composites producing all the components' structures weren't destroyed according to the FTIR results. The effect of carbon additive at a content of 2.5 wt.% relating to ceramic filler in the system of polymer matrix composites was shown, with permittivity increasing up to ε' = 28 with a simultaneous decrease in dielectric loss (tanδ < 0.1) at f = 103 Hz for composites of PTFE/KFTO(H)@CB (30 vol.%).

10.
Polymers (Basel) ; 14(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36365603

RESUMO

New three-phase composites, destined for application as dielectrics in the manufacturing of passive elements of flexible electronics, and based on polymer (PVDF) matrix filled with powdered ceramics of the hollandite-like (KFTO(H)) structure (5.0; 7.5; 15; 30 vol.%) and carbon (MWCNT) additive (0.5; 1.0; 1.5 wt.% regarding the KFTO(H) amount), were obtained and studied by XRD, FTIR and SEM methods. Chemical composition and stoichiometric formula of the ceramic material synthesized by the sol-gel method were confirmed with the XRF analysis data. The influence of the ceramic and carbon fillers on the electrical properties of the obtained composites was investigated using impedance spectroscopy. The optimal combination of permittivity and dielectric loss values at 1 kHz (77.6 and 0.104, respectively) was found for the compositions containing K1.6Fe1.6Ti6.4O16 (30 vol.%) and MWCNTs (1.0 wt.% regarding the amount of ceramic filler).

11.
Data Brief ; 31: 105770, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32548220

RESUMO

Low-grade waste heat harvesting and conversion into electric energy is an important way of renewable energy development and thermo-electrochemical cells are promising devices to solve this problem. In this paper, we report original data on the current density and maximum output power dependents on voltage of the thermos-cells with nickel hollow microspheres electrodes and different electrolyte concentration (from 0.1 to 3.0 mol/l)which exhibit excellent hypothetical Seebeck coefficient and accordingly high open-circuit voltage values at low source temperature. The composition, microstructure and morphology of the hollow nickel microspheres based electrodes are included here. Because of the low cost of nickel based thermo-cells could be commercially feasible for harvesting low-quality thermal energy, in this connection, the raw data of measurements of their properties are given here. The data is related to "High Seebeck coefficient thermo-electrochemical cell using nickel hollow microspheres electrodes", Burmistrov et al., Renewable Energy, 2020 [1].

12.
Nanomaterials (Basel) ; 7(12)2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257073

RESUMO

The development of portable gas-sensing units implies a special care of their power efficiency, which is often approached by operation at room temperature. This issue primarily appeals to a choice of suitable materials whose functional properties are sensitive toward gas vapors at these conditions. While the gas sensitivity is nowadays advanced by employing the materials at nano-dimensional domain, the room temperature operation might be targeted via the application of layered solid-state electrolytes, like titanates. Here, we report gas-sensitive properties of potassium titanate whiskers, which are placed over a multielectrode chip by drop casting from suspension to yield a matrix mono-layer of varied density. The material synthesis conditions are straightforward both to get stable single-crystalline quasi-one-dimensional whiskers with a great extent of potassium replacement and to favor the increase of specific surface area of the structures. The whisker layer is found to be sensitive towards volatile organic compounds (ethanol, isopropanol, acetone) in the mixture with air at room temperature. The vapor identification is obtained via processing the vector signal generated by sensor array of the multielectrode chip with the help of pattern recognition algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA