Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930832

RESUMO

Replacing synthetic insecticides with transgenic crops for pest management has been economically and environmentally beneficial, but these benefits erode as pests evolve resistance. It has been proposed that novel genomic approaches could track molecular signals of emerging resistance to aid in resistance management. To test this, we quantified patterns of genomic change in Helicoverpa zea, a major lepidopteran pest and target of transgenic Bacillus thuringiensis (Bt) crops, between 2002 and 2017 as both Bt crop adoption and resistance increased in North America. Genomic scans of wild H. zea were paired with quantitative trait locus (QTL) analyses and showed the genomic architecture of field-evolved Cry1Ab resistance was polygenic, likely arising from standing genetic variation. Resistance to pyramided Cry1A.105 and Cry2Ab2 toxins was controlled by fewer loci. Of the 11 previously described Bt resistance genes, 9 showed no significant change over time or major effects on resistance. We were unable to rule out a contribution of aminopeptidases (apns), as a cluster of apn genes were found within a Cry-associated QTL. Molecular signals of emerging Bt resistance were detectable as early as 2012 in our samples, and we discuss the potential and pitfalls of whole-genome analysis for resistance monitoring based on our findings. This first study of Bt resistance evolution using whole-genome analysis of field-collected specimens demonstrates the need for a more holistic approach to examining rapid adaptation to novel selection pressures in agricultural ecosystems.


Assuntos
Evolução Molecular , Resistência a Inseticidas/genética , Mariposas/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Animais , Bacillus thuringiensis/genética , Produtos Agrícolas , Genoma de Inseto/genética , Masculino
2.
Proc Natl Acad Sci U S A ; 116(16): 7692-7697, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30642954

RESUMO

In November of 2017, an interdisciplinary panel discussed the complexities of gene drive applications as part of the third Sackler Colloquium on "The Science of Science Communication." The panel brought together a social scientist, life scientist, and journalist to discuss the issue from each of their unique perspectives. This paper builds on the ideas and conversations from the session to provide a more nuanced discussion about the context surrounding responsible communication and decision-making for cases of post-normal science. Deciding to use gene drives to control and suppress pests will involve more than a technical assessment of the risks involved, and responsible decision-making regarding their use will require concerted efforts from multiple actors. We provide a review of gene drives and their potential applications, as well as the role of journalists in communicating the extent of uncertainties around specific projects. We also discuss the roles of public opinion and online environments in public engagement with scientific processes. We conclude with specific recommendations about how to address current challenges and foster more effective communication and decision-making for complex, post-normal issues, such as gene drives.


Assuntos
Comunicação , Tecnologia de Impulso Genético , Ciência , Tomada de Decisões , Humanos , Opinião Pública
3.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499184

RESUMO

The use of insect-resistant transgenic crops producing Bacillus thuringiensis protein Cry toxins (Bt) to control caterpillars is wide-spread. Development of a mechanism to prevent Bt from reaching its target site in the digestive system could result in Bt resistance and resistance to other insecticides active per os. Increased feeding rates by increasing temperature in tobacco budworms, Chloridea virescens, and bollworms, Helicoverpa zea, decreased Bt Cry1Ac susceptibility and mortality. The same was found in C. virescens for Bollgard II plant extract containing Bt Cry1Ac and Cry2Ab2 toxins. Furthermore, H. zea from the same inbred laboratory colony that fed faster independent of temperature manipulation were less susceptible to Bt intoxication. A laboratory derived C. virescens Bt resistant strain demonstrated a higher feeding rate on non-Bt artificial diet than the parental, Bt susceptible strain. A laboratory-reared Bt resistant fall armyworm, Spodoptera frugiperda, strain also fed faster on non-Bt diet compared to Bt susceptible caterpillars of the same species, both originally collected from corn. The studies in toto and the literature reviewed support the hypothesis that increased feeding rate is a behavioral mechanism for reducing caterpillar susceptibility to Bt. Its possible role in resistance needs further study.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas de Bacillus thuringiensis , Mariposas/genética , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Resistência a Inseticidas/genética , Gossypium/metabolismo , Larva/metabolismo
4.
Annu Rev Ecol Evol Syst ; 51(1): 505-531, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34366722

RESUMO

The spread of synthetic gene drives is often discussed in the context of panmictic populations connected by gene flow and described with simple deterministic models. Under such assumptions, an entire species could be altered by releasing a single individual carrying an invasive gene drive, such as a standard homing drive. While this remains a theoretical possibility, gene drive spread in natural populations is more complex and merits a more realistic assessment. The fate of any gene drive released in a population would be inextricably linked to the population's ecology. Given the uncertainty often involved in ecological assessment of natural populations, understanding the sensitivity of gene drive spread to important ecological factors is critical. Here we review how different forms of density dependence, spatial heterogeneity, and mating behaviors can impact the spread of self-sustaining gene drives. We highlight specific aspects of gene drive dynamics and the target populations that need further research.

5.
Mol Ecol ; 27(1): 167-181, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29134741

RESUMO

Adaptation to human-induced environmental change has the potential to profoundly influence the genomic architecture of affected species. This is particularly true in agricultural ecosystems, where anthropogenic selection pressure is strong. Heliothis virescens primarily feeds on cotton in its larval stages, and US populations have been declining since the widespread planting of transgenic cotton, which endogenously expresses proteins derived from Bacillus thuringiensis (Bt). No physiological adaptation to Bt toxin has been found in the field, so adaptation in this altered environment could involve (i) shifts in host plant selection mechanisms to avoid cotton, (ii) changes in detoxification mechanisms required for cotton-feeding vs. feeding on other hosts or (iii) loss of resistance to previously used management practices including insecticides. Here, we begin to address whether such changes occurred in H. virescens populations between 1997 and 2012, as Bt-cotton cultivation spread through the agricultural landscape. For our study, we produced an H. virescens genome assembly and used this in concert with a ddRAD-seq-enabled genome scan to identify loci with significant allele frequency changes over the 15-year period. Genetic changes at a previously described H. virescens insecticide target of selection were detectable in our genome scan and increased our confidence in this methodology. Additional loci were also detected as being under selection, and we quantified the selection strength required to elicit observed allele frequency changes at each locus. Potential contributions of genes near loci under selection to adaptive phenotypes in the H. virescens cotton system are discussed.


Assuntos
Agricultura , Evolução Biológica , Mariposas/fisiologia , Alelos , Animais , Estudos de Associação Genética , Loci Gênicos , Marcadores Genéticos , Variação Genética , Genoma de Inseto , Haplótipos/genética , Resistência a Inseticidas/genética , Mariposas/efeitos dos fármacos , Mariposas/genética , Polimorfismo de Nucleotídeo Único/genética , Piretrinas/toxicidade , Seleção Genética , Análise de Sequência de DNA
6.
Heredity (Edinb) ; 120(3): 234-250, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29238078

RESUMO

Intraspecific variation in ecologically important traits is a cornerstone of Darwin's theory of evolution by natural selection. The evolution and maintenance of this variation depends on genetic architecture, which in turn determines responses to natural selection. Some models suggest that traits with complex architectures are less likely to respond to selection than those with simple architectures, yet rapid divergence has been observed in such traits. The simultaneous evolutionary lability and genetic complexity of host plant use in the Lepidopteran subfamily Heliothinae suggest that architecture may not constrain ecological adaptation in this group. Here we investigate the response of Chloridea virescens, a generalist that feeds on diverse plant species, to selection for performance on a novel host, Physalis angulata (Solanaceae). P. angulata is the preferred host of Chloridea subflexa, a narrow specialist on the genus Physalis. In previous experiments, we found that the performance of C. subflexa on P. angulata depends on many loci of small effect distributed throughout the genome, but whether the same architecture would be involved in the generalist's adoption of P. angulata was unknown. Here we report a rapid response to selection in C. virescens for performance on P. angulata, and establish that the genetic architecture of intraspecific variation is quite similar to that of the interspecific differences in terms of the number, distribution, and effect sizes of the QTL involved. We discuss the impact of genetic architecture on the ability of Heliothine moths to respond to varying ecological selection pressures.


Assuntos
Adaptação Biológica/genética , Comportamento Alimentar , Mariposas/genética , Seleção Genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Ligação Genética , Larva/genética , Physalis , Locos de Características Quantitativas
7.
PLoS Comput Biol ; 12(3): e1004695, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26962871

RESUMO

Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication) can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted). We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences-consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even modest perturbations induced by weak interventions can exhibit strong, albeit transient, epidemiological effects. This, together with our finding that under some conditions combining strategies could have transient adverse epidemiological effects suggests that a relatively long time horizon may be necessary to discern the efficacy of alternative intervention strategies.


Assuntos
Doenças Transmissíveis/genética , Doenças Transmissíveis/virologia , Engenharia Genética/métodos , Insetos Vetores/genética , Modelos Genéticos , Animais , Terapia Combinada/métodos , Doenças Transmissíveis/epidemiologia , Simulação por Computador , Humanos , Resultado do Tratamento
8.
9.
Proc Biol Sci ; 281(1779): 20133054, 2014 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-24500170

RESUMO

Evolutionary diversification of sexual communication systems in moths is perplexing because signal and response are under stabilizing selection in many species, and this is expected to constrain evolutionary change. In the moth Heliothis virescens, we consistently found high phenotypic variability in the female sex pheromone blend within each of four geographically distant populations. Here, we assess the heritability, genetic basis and behavioural consequences of this variation. Artificial selection with field-collected moths dramatically increased the relative amount of the saturated compound 16:Ald and decreased its unsaturated counterpart Z11-16:Ald, the major sex pheromone component (high line). In a cross between the high- and low-selected lines, one quantitative trait locus (QTL) explained 11-21% of the phenotypic variance in the 16:Ald/Z11-16:Ald ratio. Because changes in activity of desaturase enzymes could affect this ratio, we measured their expression levels in pheromone glands and mapped desaturase genes onto our linkage map. A delta-11-desaturase had lower expression in females producing less Z11-16:Ald; however, this gene mapped to a different chromosome than the QTL. A model in which the QTL is a trans-acting repressor of delta-11 desaturase expression explains many features of the data. Selection favouring heterozygotes which produce more unsaturated components could maintain a polymorphism at this locus.


Assuntos
Mariposas/genética , Atrativos Sexuais/genética , Comportamento Sexual Animal , Animais , Variação Genética , Endogamia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Mariposas/fisiologia , Fenótipo , Locos de Características Quantitativas , Atrativos Sexuais/química
10.
Proc Natl Acad Sci U S A ; 107(19): 8660-5, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20404144

RESUMO

Long distance sexual communication in moths has fascinated biologists because of the complex, precise female pheromone signals and the extreme sensitivity of males to specific pheromone molecules. Progress has been made in identifying some genes involved in female pheromone production and in male response. However, we have lacked information on the genetic changes involved in evolutionary diversification of these mate-finding mechanisms that is critical to understanding speciation in moths and other taxa. We used a combined quantitative trait locus (QTL) and candidate gene approach to determine the genetic architecture of sexual isolation in males of two congeneric moths, Heliothis subflexa and Heliothis virescens. We report behavioral and neurophysiological evidence that differential male responses to three female-produced chemicals (Z9-14:Ald, Z9-16:Ald, Z11-16:OAc) that maintain sexual isolation of these species are all controlled by a single QTL containing at least four odorant receptor genes. It is not surprising that pheromone receptor differences could control H. subflexa and H. virescens responses to Z9-16:Ald and Z9-14:Ald, respectively. However, central rather than peripheral level control over the positive and negative responses of H. subflexa and H. virescens to Z11-16:OAc had been expected. Tight linkage of these receptor genes indicates that mutations altering male response to complex blends could be maintained in linkage disequilibrium and could affect the speciation process. Other candidate genes such as those coding for pheromone binding proteins did not map to this QTL, but there was some genetic evidence of a QTL for response to Z11-16:OH associated with a sensory neuron membrane protein gene.


Assuntos
Genes de Insetos/genética , Mariposas/efeitos dos fármacos , Mariposas/genética , Feromônios/farmacologia , Locos de Características Quantitativas/genética , Receptores Odorantes/genética , Comportamento Sexual Animal/efeitos dos fármacos , Estruturas Animais/efeitos dos fármacos , Estruturas Animais/fisiologia , Animais , Mapeamento Cromossômico , Cromossomos/genética , Cruzamentos Genéticos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Endogamia , Cetonas/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Especificidade da Espécie
11.
J Insect Sci ; 13: 160, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24773407

RESUMO

In a previous study, the Drosophila melanogaster OR67d(GAL4);UAS system was used to functionally characterize the receptor for the major component of the sex pheromone in the tobacco budworm, Heliothis virescens Fabricius (Lepidoptera: Noctuidae), HvOR13. Electrophysiological and behavioral assays showed that transgenic flies expressing HvOR13 responded to (Z)-11-hexadecenal (Z11-16:Ald). However, tests were not performed to determine whether these flies would also respond to secondary components of the H. virescens sex pheromone. Thus, in this study the response spectrum of HvOR13 expressed in this system was examined by performing single cell recordings from odor receptor neuron in trichoid T1 sensilla on antennae of two Or67d(GAL4 [1]); UAS-HvOR13 lines stimulated with Z11-16:Ald and six H. virescens secondary pheromone components. Fly courtship assays were also performed to examine the behavioral response of the Or67d(GAL4[1]); UAS-HvOR13 flies to Z11-16:Ald and the secondary component Z9-14:Ald. Our combined electrophysiological and behavioral studies indicated high specificity and sensitivity of HvOR13 to Z11-16:Ald. Interestingly, a mutation leading to truncation in the HvOR13 C-terminal region affected but did not abolish pheromone receptor response to Z11-16:Ald. The findings are assessed in relationship to other HvOR13 heterologous expression studies, and the role of the C-terminal domain in receptor function is discussed. A third line expressing HvOR15 was also tested but did not respond to any of the seven pheromone components.


Assuntos
Antenas de Artrópodes/fisiologia , Proteínas de Insetos/genética , Mariposas/fisiologia , Receptores Odorantes/genética , Comportamento Sexual Animal , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Expressão Gênica , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Mariposas/genética , Receptores Odorantes/metabolismo , Sensilas/fisiologia , Alinhamento de Sequência , Análise de Sequência de DNA , Atrativos Sexuais/metabolismo
12.
PeerJ ; 11: e15414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37337584

RESUMO

The maize weevil, Sitophilus zeamais, is a worldwide pest that disproportionately affects subsistence farmers in developing countries. Damage from this pest threatens food security in these communities as widely available and effective control methods are lacking. With advances over the last decade in the development of genetic pest management techniques, addressing pest issues at the ecosystem level as opposed to the farm level may be a possibility. However, pest species selected for genetic management techniques require a well-characterized genome and few genomic tools have been developed for S. zeamais. Here, we have measured the genome size and developed the first genetic linkage map for this species. The genome size was determined using flow cytometry as 682 Mb and 674 Mb for females and males, respectively. The linkage map contains 11 linkage groups, which correspond to the 10 autosomes and 1 X-chromosome found in the species and it contains 1,121 SNPs. This linkage map will be useful for assembling a complete genome for S. zeamais.


Assuntos
Gorgulhos , Masculino , Humanos , Animais , Feminino , Gorgulhos/genética , Ecossistema , Mapeamento Cromossômico , Técnicas Genéticas , Cromossomos Humanos Par 1
13.
PLoS One ; 18(4): e0264469, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37043502

RESUMO

The maize weevil, Sitophilus zeamais, is a ubiquitous pest of maize and other cereal crops worldwide and remains a threat to food security in subsistence communities. Few population genetic studies have been conducted on the maize weevil, but those that exist have shown that there is very little genetic differentiation between geographically dispersed populations and that it is likely the species has experienced a recent range expansion within the last few hundred years. While the previous studies found little genetic structure, they relied primarily on mitochondrial and nuclear microsatellite markers for their analyses. It is possible that more fine-scaled population genetic structure exists due to local adaptation, the biological limits of natural species dispersal, and the isolated nature of subsistence farming communities. In contrast to previous studies, here, we utilized genome-wide single nucleotide polymorphism data to evaluate the genetic population structure of the maize weevil from the southern and coastal Mexican states of Oaxaca and Chiapas. We employed strict SNP filtering to manage large next generation sequencing lane effects and this study is the first to find fine-scale genetic population structure in the maize weevil. Here, we show that although there continues to be gene flow between populations of maize weevil, that fine-scale genetic structure exists. It is possible that this structure is shaped by local adaptation of the insects, the movement and trade of maize by humans in the region, geographic barriers to gene flow, or a combination of these factors.


Assuntos
Gorgulhos , Animais , Humanos , Gorgulhos/genética , México , Agricultura , Deriva Genética , Estruturas Genéticas , Zea mays/genética
14.
Pest Manag Sci ; 79(10): 3493-3503, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37139844

RESUMO

BACKGROUND: Helicoverpa zea, an economic pest in the south-eastern United States, has evolved practical resistance to Bacillus thuringiensis (Bt) Cry toxins in maize and cotton. Insect resistance management (IRM) programs have historically required planting of structured non-Bt maize, but because of its low adoption, the use of seed blends has been considered. To generate knowledge on target pest biology and ecology to help improve IRM strategies, nine field trials were conducted in 2019 and 2020 in Florida, Georgia, North Carolina, and South Carolina to evaluate the impact of Bt (Cry1Ab + Cry1F or Cry1Ab + Cry1F + Vip3A) and non-Bt maize plants in blended and structured refuge treatments on H. zea pupal survival, weight, soil pupation depth, adult flight parameters, and adult time to eclosion. RESULTS: From a very large sample size and geography, we found a significant difference in pupal mortality and weight among treatments in seed blends with Vip3A, implying that cross-pollination occurred between Bt and non-Bt maize ears. There was no treatment effect for pupation depth, adult flight distance, and eclosion time. CONCLUSION: Results of this study demonstrate the potential impact of different refuge strategies on phenological development and survival of an important pest species of regulatory concern. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Estados Unidos , Zea mays/genética , Pupa , Larva , Endotoxinas/farmacologia , Plantas Geneticamente Modificadas/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/genética , Toxinas de Bacillus thuringiensis/farmacologia , Sementes , Resistência a Inseticidas , Bacillus thuringiensis/genética
15.
Nat Commun ; 14(1): 7505, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980401

RESUMO

Moth sex pheromones are a classical model for studying sexual selection. Females typically produce a species-specific pheromone blend that attracts males. Revealing the enzymes involved in the interspecific variation in blend composition is key for understanding the evolution of these sexual communication systems. The nature of the enzymes involved in the variation of acetate esters, which are prominent compounds in moth pheromone blends, remains unclear. We identify enzymes involved in acetate degradation using two closely related moth species: Heliothis (Chloridea) subflexa and H. (C.) virescens, which have different quantities of acetate esters in their sex pheromone. Through comparative transcriptomic analyses and CRISPR/Cas9 knockouts, we show that two lipases and two esterases from H. virescens reduce the levels of pheromone acetate esters when expressed in H. subflexa females. Together, our results show that lipases and carboxylesterases are involved in tuning Lepidoptera pheromones composition.


Assuntos
Mariposas , Atrativos Sexuais , Masculino , Animais , Feminino , Mariposas/genética , Mariposas/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Feromônios/metabolismo , Lipase/metabolismo , Acetatos/metabolismo
16.
J Med Entomol ; 49(6): 1177-88, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23270145

RESUMO

We demonstrate the utility of models as aids in the design and development of experiments aimed at measuring the effects of proposed vector population control strategies. We describe the exploration of a stochastic, age-structured model that simulates field cage experiments that test the ability of a female-killing strain of the mosquito Aedes aegypti (L.) to suppress a wild-type population. Model output predicts that choices of release ratio and population size can impact mean extinction time and variability in extinction time among experiments. We find that unless fitness costs are >80% they will not be detectable in experiments with high release ratios. At lower release ratios, the predicted length of the experiment increases significantly for fitness costs >20%. Experiments with small populations may more accurately reflect field conditions, but extinction can occur even in the absence of a functional female-killing construct because of stochastic effects. We illustrate how the model can be used to explore experimental designs that aim to study the impact of density dependence and immigration; predictions indicate that cage population eradication may not always be obtainable in an operationally realistic time frame. We propose a method to predict the extinction time of a cage population based on the rate of population reduction with the goal of shortening the duration of the experiment. We discuss the model as a tool for exploring and assessing the utility of a wider range of scenarios than would be feasible to test experimentally because of financial and temporal restraints.


Assuntos
Aedes/genética , Animais Geneticamente Modificados , Modelos Genéticos , Controle de Mosquitos , Controle Biológico de Vetores , Animais , Simulação por Computador , Feminino , Masculino , Densidade Demográfica , Dinâmica Populacional , Projetos de Pesquisa , Processos Estocásticos
17.
J Econ Entomol ; 105(3): 767-76, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22812111

RESUMO

Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect control have been successful, but their efficacy is reduced when pests evolve resistance. To delay pest resistance to Bt crops, the U.S. Environmental Protection Agency (EPA) has required refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Such refuges are expected to be most effective if the Bt plants deliver a dose of toxin high enough to kill nearly all hybrid progeny produced by matings between resistant and susceptible pests. In 2003, the EPA first registered corn, Zea mays L., producing a Bt toxin (Cry3Bb1) that kills western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. The EPA requires minimum refuges of 20% for Cry3Bb1 corn and 5% for corn producing two Bt toxins active against corn rootworms. We conclude that the current refuge requirements are not adequate, because Bt corn hybrids active against corn rootworms do not meet the high-dose standard, and western corn rootworm has rapidly evolved resistance to Cry3Bb1 corn in the laboratory, greenhouse, and field. Accordingly, we recommend increasing the minimum refuge for Bt corn targeting corn rootworms to 50% for plants producing one toxin active against these pests and to 20% for plants producing two toxins active against these pests. Increasing the minimum refuge percentage can help to delay pest resistance, encourage integrated pest management, and promote more sustainable crop protection.


Assuntos
Proteínas de Bactérias , Besouros , Endotoxinas , Proteínas Hemolisinas , Controle de Insetos , Zea mays/parasitologia , Animais , Toxinas de Bacillus thuringiensis , Resistência a Inseticidas , Larva , Plantas Geneticamente Modificadas/parasitologia , Zea mays/genética
18.
Pathog Glob Health ; : 1-10, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36562087

RESUMO

The bioethical debate about using gene drives to alter or eradicate wild populations has focused mostly on issues concerning short-term risk assessment and management, governance and oversight, and public and community engagement, but has not examined big-picture- 'where is this going?'-questions in great depth. In other areas of bioethical controversy, big-picture questions often enter the public forum via slippery slope arguments. Given the incredible potential of gene drive organisms to alter the Earth's biota, it is somewhat surprising that slippery slope arguments have not played a more prominent role in ethical and policy debates about these emerging technologies. In this article, we examine a type of slippery slope argument against using gene drives to alter or suppress wild pest populations and consider whether it has a role to play in ethical and policy debates. Although we conclude that this argument does not provide compelling reasons for banning the use of gene drives in wild pest populations, we believe that it still has value as a morally instructive cautionary narrative that can motivate scientists, ethicists, and members of the public to think more clearly about appropriate vs. inappropriate uses of gene drive technologies, the long-term and cumulative and emergent risks of using gene drives in wild populations, and steps that can be taken to manage these risks, such as protecting wilderness areas where people can enjoy life forms that have not been genetically engineered.

19.
PLoS Negl Trop Dis ; 16(12): e0010863, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36548248

RESUMO

The importance of mosquitoes in human pathogen transmission has motivated major research efforts into mosquito biology in pursuit of more effective vector control measures. Aedes aegypti is a particular concern in tropical urban areas, where it is the primary vector of numerous flaviviruses, including the yellow fever, Zika, and dengue viruses. With an anthropophilic habit, Ae. aegypti prefers houses, human blood meals, and ovipositioning in water-filled containers. We hypothesized that this relatively simple ecological niche should allow us to predict the impacts of insecticidal control measures on mosquito populations. To do this, we use Skeeter Buster 2 (SB2), a stochastic, spatially explicit, mechanistic model of Ae. aegypti population biology. SB2 builds on Skeeter Buster, which reproduced equilibrium dynamics of Ae. aegypti in Iquitos, Peru. Our goal was to validate SB2 by predicting the response of mosquito populations to perturbations by indoor insecticidal spraying and widespread destructive insect surveys. To evaluate SB2, we conducted two field experiments in Iquitos, Peru: a smaller pilot study in 2013 (S-2013) followed by a larger experiment in 2014 (L-2014). Here, we compare model predictions with (previously reported) empirical results from these experiments. In both simulated and empirical populations, repeated spraying yielded substantial yet temporary reductions in adult densities. The proportional effects of spraying were broadly comparable between simulated and empirical results, but we found noteworthy differences. In particular, SB2 consistently over-estimated the proportion of nulliparous females and the proportion of containers holding immature mosquitoes. We also observed less temporal variation in simulated surveys of adult abundance relative to corresponding empirical observations. Our results indicate the presence of ecological heterogeneities or sampling processes not effectively represented by SB2. Although additional empirical research could further improve the accuracy and precision of SB2, our results underscore the importance of non-linear dynamics in the response of Ae. aegypti populations to perturbations, and suggest general limits to the fine-grained predictability of its population dynamics over space and time.


Assuntos
Aedes , Dengue , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Feminino , Humanos , Inseticidas/farmacologia , Mosquitos Vetores , Peru , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA