Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38941113

RESUMO

This study describes the development of a resource module that is part of a learning platform named "NIGMS Sandbox for Cloud-based Learning" (https://github.com/NIGMS/NIGMS-Sandbox). The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox at the beginning of this Supplement. This module delivers learning materials on de novo transcriptome assembly using Nextflow in an interactive format that uses appropriate cloud resources for data access and analysis. Cloud computing is a powerful new means by which biomedical researchers can access resources and capacity that were previously either unattainable or prohibitively expensive. To take advantage of these resources, however, the biomedical research community needs new skills and knowledge. We present here a cloud-based training module, developed in conjunction with Google Cloud, Deloitte Consulting, and the NIH STRIDES Program, that uses the biological problem of de novo transcriptome assembly to demonstrate and teach the concepts of computational workflows (using Nextflow) and cost- and resource-efficient use of Cloud services (using Google Cloud Platform). Our work highlights the reduced necessity of on-site computing resources and the accessibility of cloud-based infrastructure for bioinformatics applications.


Assuntos
Computação em Nuvem , Transcriptoma , Biologia Computacional/métodos , Biologia Computacional/educação , Software , Humanos , Perfilação da Expressão Gênica/métodos , Internet
2.
Dev Biol ; 492: 200-211, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273621

RESUMO

Germ granules harbor processes that maintain germline integrity and germline stem cell capacity. Depleting core germ granule components in C. elegans leads to the reprogramming of germ cells, causing them to express markers of somatic differentiation in day-two adults. Somatic reprogramming is associated with complete sterility at this stage. The resulting germ cell atrophy and other pleiotropic defects complicate our understanding of the initiation of reprogramming and how processes within germ granules safeguard the totipotency and immortal potential of germline stem cells. To better understand the initial events of somatic reprogramming, we examined total mRNA (transcriptome) and polysome-associated mRNA (translatome) changes in a precision full-length deletion of glh-1, which encodes a homolog of the germline-specific Vasa/DDX4 DEAD-box RNA helicase. Fertile animals at a permissive temperature were analyzed as young adults, a stage that precedes by 24 â€‹h the previously determined onset of somatic reporter-gene expression in the germline. Two significant changes are observed at this early stage. First, the majority of neuropeptide-encoding transcripts increase in both the total and polysomal mRNA fractions, suggesting that GLH-1 or its effectors suppress this expression. Second, there is a significant decrease in Major Sperm Protein (MSP)-domain mRNAs when glh-1 is deleted. We find that the presence of GLH-1 helps repress spermatogenic expression during oogenesis, but boosts MSP expression to drive spermiogenesis and sperm motility. These insights define an early role for GLH-1 in repressing somatic reprogramming to maintain germline integrity.


Assuntos
Proteínas de Caenorhabditis elegans , Neuropeptídeos , Animais , Masculino , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Grânulos Citoplasmáticos/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Motilidade dos Espermatozoides , Sêmen/metabolismo , Células Germinativas/metabolismo , Espermatogênese/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
PLoS Genet ; 16(12): e1008857, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370780

RESUMO

Studies of the severely pancytopenic scat mouse model first demonstrated the crucial role of RASA3, a dual RAS and RAP GTPase activating protein (GAP), in hematopoiesis. RASA3 is required for survival in utero; germline deletion is lethal at E12.5-13.5 due to severe hemorrhage. Here, conditional deletion in hematopoietic stem and progenitor cells (HSPCs) using Vav-iCre recapitulates the null phenotype demonstrating that RASA3 is required at the stem and progenitor level to maintain blood vessel development and integrity and effective blood production. In adults, bone marrow blood cell production and spleen stress erythropoiesis are suppressed significantly upon induction of RASA3 deficiency, leading to pancytopenia and death within two weeks. Notably, RASA3 missense mutations in two mouse models, scat (G125V) and hlb381 (H794L), show dramatically different hematopoietic consequences specific to both genetic background and molecular variant. The mutation effect is mediated at least in part by differential effects on RAS and RAP activation. In addition, we show that the role of RASA3 is conserved during human terminal erythropoiesis, highlighting a potential function for the RASA3-RAS axis in disordered erythropoiesis in humans. Finally, global transcriptomic studies in scat suggest potential targets to ameliorate disease progression.


Assuntos
Proteínas Ativadoras de GTPase/genética , Patrimônio Genético , Hematopoese , Mutação , Pancitopenia/genética , Animais , Células Cultivadas , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
4.
Reproduction ; 159(1): 15-26, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677600

RESUMO

The testis transcriptome is exceptionally complex. Despite its complexity, previous testis transcriptome analyses relied on a reductive method for transcript identification, thus underestimating transcriptome complexity. We describe here a more complete testis transcriptome generated by combining Tuxedo, a reductive method, and spliced-RUM, a combinatorial transcript-building approach. Forty-two percent of the expanded testis transcriptome is composed of unannotated RNAs with novel isoforms of known genes and novel genes constituting 78 and 9.8% of the newly discovered transcripts, respectively. Across tissues, novel transcripts were predominantly expressed in the testis with the exception of novel isoforms which were also highly expressed in the adult ovary. Within the testis, novel isoform expression was distributed equally across all cell types while novel genes were predominantly expressed in meiotic and post-meiotic germ cells. The majority of novel isoforms retained their protein-coding potential while most novel genes had low protein-coding potential. However, a subset of novel genes had protein-coding potentials equivalent to known protein-coding genes. Shotgun mass spectrometry of round spermatid total protein identified unique peptides from four novel genes along with seven annotated non-coding RNAs. These analyses demonstrate the testis expresses a wide range of novel transcripts that give rise to novel proteins.


Assuntos
Regulação da Expressão Gênica , Espectrometria de Massas/métodos , Proteoma/análise , Testículo/metabolismo , Transcriptoma , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos , Testículo/citologia
5.
RNA Biol ; 17(5): 689-702, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32009536

RESUMO

Mutation of the essential yeast protein Ipa1 has previously been demonstrated to cause defects in pre-mRNA 3' end processing and growth, but the mechanism underlying these defects was not clear. In this study, we show that the ipa1-1 mutation causes a striking depletion of Ysh1, the evolutionarily conserved endonuclease subunit of the 19-subunit mRNA Cleavage/Polyadenylation (C/P) complex, but does not decrease other C/P subunits. YSH1 overexpression rescues both the growth and 3' end processing defects of the ipa1-1 mutant. YSH1 mRNA level is unchanged in ipa1-1 cells, and proteasome inactivation prevents Ysh1 loss and causes accumulation of ubiquitinated Ysh1. Ysh1 ubiquitination is mediated by the Ubc4 ubiquitin-conjugating enzyme and Mpe1, which in addition to its function in C/P, is also a RING ubiquitin ligase. In summary, Ipa1 affects mRNA processing by controlling the availability of the C/P endonuclease and may represent a regulatory mechanism that could be rapidly deployed to facilitate reprogramming of cellular responses.


Assuntos
Endonucleases/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro/genética , Ubiquitina/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Complexos Multiproteicos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade de RNA , RNA Mensageiro/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
6.
Nucleic Acids Res ; 45(3): 1130-1143, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180284

RESUMO

The rules of engagement between zinc finger transcription factors and DNA have been partly defined by in vitro DNA-binding and structural studies, but less is known about how these rules apply in vivo. Here, we demonstrate how a missense mutation in the second zinc finger of Krüppel-like factor-1 (KLF1) leads to degenerate DNA-binding specificity in vivo, resulting in ectopic transcription and anemia in the Nan mouse model. We employed ChIP-seq and 4sU-RNA-seq to identify aberrant DNA-binding events genome wide and ectopic transcriptional consequences of this binding. We confirmed novel sequence specificity of the mutant recombinant zinc finger domain by performing biophysical measurements of in vitro DNA-binding affinity. Together, these results shed new light on the mechanisms by which missense mutations in DNA-binding domains of transcription factors can lead to autosomal dominant diseases.


Assuntos
DNA/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Transcriptoma/genética , Dedos de Zinco/genética , Animais , Linhagem Celular , Sobrevivência Celular/genética , Células Eritroides/metabolismo , Eritropoese/genética , Humanos , Fatores de Transcrição Kruppel-Like/química , Camundongos , Modelos Genéticos , Modelos Moleculares , Proteínas Mutantes/química , Mutação de Sentido Incorreto , Ligação Proteica
7.
Genome Res ; 23(10): 1690-703, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23788651

RESUMO

Systemic response to DNA damage and other stresses is a complex process that includes changes in the regulation and activity of nearly all stages of gene expression. One gene regulatory mechanism used by eukaryotes is selection among alternative transcript isoforms that differ in polyadenylation [poly(A)] sites, resulting in changes either to the coding sequence or to portions of the 3' UTR that govern translation, stability, and localization. To determine the extent to which this means of regulation is used in response to DNA damage, we conducted a global analysis of poly(A) site usage in Saccharomyces cerevisiae after exposure to the UV mimetic, 4-nitroquinoline 1-oxide (4NQO). Two thousand thirty-one genes were found to have significant variation in poly(A) site distributions following 4NQO treatment, with a strong bias toward loss of short transcripts, including many with poly(A) sites located within the protein coding sequence (CDS). We further explored one possible mechanism that could contribute to the widespread differences in mRNA isoforms. The change in poly(A) site profile was associated with an inhibition of cleavage and polyadenylation in cell extract and a decrease in the levels of several key subunits in the mRNA 3'-end processing complex. Sequence analysis identified differences in the cis-acting elements that flank putatively suppressed and enhanced poly(A) sites, suggesting a mechanism that could discriminate between variable and constitutive poly(A) sites. Our analysis indicates that variation in mRNA length is an important part of the regulatory response to DNA damage.


Assuntos
Dano ao DNA , Genoma Fúngico , Isoformas de RNA/metabolismo , Saccharomyces cerevisiae/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Óxidos N-Cíclicos/farmacologia , Etiquetas de Sequências Expressas , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Fases de Leitura Aberta , Poliadenilação , Isoformas de RNA/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de RNA
8.
Biol Reprod ; 94(2): 34, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26700942

RESUMO

Spermatogenesis is coordinated by the spatial and temporal expression of many transcriptional and posttranscriptional factors. The cyclic AMP-responsive element modulator (CREM) gene encodes both activator and repressor isoforms that act as transcription factors to regulate spermiogenesis. We found that the testis-expressed paralog of CstF-64, tauCstF-64 (gene symbol Cstf2t), is involved in a polyadenylation site choice switch of Crem mRNA and leads to an overall decrease of the Crem mRNAs that are generated from internal promoters in Cstf2t(-/-) mice. More surprisingly, loss of tauCstF-64 also leads to alternative splicing of Crem exon 4, which contains an important activation domain. Thus, testis-specific CREMtau2 isoform protein levels are reduced in Cstf2t(-/-) mice. Consequently, expression of 15 CREM-regulated genes is decreased in testes of Cstf2t(-/-) mice at 25 days postpartum. These effects might further contribute to the infertility phenotype of these animals. This demonstrates that tauCstF-64 is an important stage-specific regulator of Crem mRNA processing that modulates the spatial and temporal expression of downstream stage-specific genes necessary for the proper development of sperm in mice.


Assuntos
Fator Estimulador de Clivagem/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Isoformas de Proteínas/metabolismo , Testículo/metabolismo , Processamento Alternativo , Animais , Fator Estimulador de Clivagem/genética , Modulador de Elemento de Resposta do AMP Cíclico/genética , Masculino , Camundongos , Poliadenilação , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermatogênese/fisiologia , Espermatozoides/metabolismo
9.
Genetics ; 226(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37967370

RESUMO

The Pcf11 protein is an essential subunit of the large complex that cleaves and polyadenylates eukaryotic mRNA precursor. It has also been functionally linked to gene-looping, termination of RNA Polymerase II (Pol II) transcripts, and mRNA export. We have examined a poorly characterized but conserved domain (amino acids 142-225) of the Saccharomyces cerevisiae  Pcf11 and found that while it is not needed for mRNA 3' end processing or termination downstream of the poly(A) sites of protein-coding genes, its presence improves the interaction with Pol II and the use of transcription terminators near gene promoters. Analysis of genome-wide Pol II occupancy in cells with Pcf11 missing this region, as well as Pcf11 mutated in the Pol II CTD Interacting Domain, indicates that systematic changes in mRNA expression are mediated primarily at the level of transcription. Global expression analysis also shows that a general stress response, involving both activation and suppression of specific gene sets known to be regulated in response to a wide variety of stresses, is induced in the two pcf11 mutants, even though cells are grown in optimal conditions. The mutants also cause an unbalanced expression of cell wall-related genes that does not activate the Cell Wall Integrity pathway but is associated with strong caffeine sensitivity. Based on these findings, we propose that Pcf11 can modulate the expression level of specific functional groups of genes in ways that do not involve its well-characterized role in mRNA 3' end processing.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Poliadenilação e Clivagem de mRNA , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Mutação , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica
10.
Front Immunol ; 14: 1091403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761770

RESUMO

Regulation of mRNA polyadenylation is important for response to external signals and differentiation in several cell types, and results in mRNA isoforms that vary in the amount of coding sequence or 3' UTR regulatory elements. However, its role in differentiation of monocytes to macrophages has not been investigated. Macrophages are key effectors of the innate immune system that help control infection and promote tissue-repair. However, overactivity of macrophages contributes to pathogenesis of many diseases. In this study, we show that macrophage differentiation is characterized by shortening and lengthening of mRNAs in relevant cellular pathways. The cleavage/polyadenylation (C/P) proteins increase during differentiation, suggesting a possible mechanism for the observed changes in poly(A) site usage. This was surprising since higher C/P protein levels correlate with higher proliferation rates in other systems, but monocytes stop dividing after induction of differentiation. Depletion of CstF64, a C/P protein and known regulator of polyadenylation efficiency, delayed macrophage marker expression, cell cycle exit, attachment, and acquisition of structural complexity, and impeded shortening of mRNAs with functions relevant to macrophage biology. Conversely, CstF64 overexpression increased use of promoter-proximal poly(A) sites and caused the appearance of differentiated phenotypes in the absence of induction. Our findings indicate that regulation of polyadenylation plays an important role in macrophage differentiation.


Assuntos
Poli A , Poliadenilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poli A/metabolismo , Diferenciação Celular , Macrófagos/metabolismo
11.
Sci Rep ; 13(1): 12239, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507475

RESUMO

Krüppel-like factor 9 (Klf9) is a ubiquitously expressed transcription factor that is a feedforward regulator of multiple stress-responsive and endocrine signaling pathways. We previously described how loss of Klf9 function affects the transcriptome of zebrafish larvae sampled at a single time point 5 days post-fertilization (dpf). However, klf9 expression oscillates diurnally, and the sampled time point corresponded to its expression nadir. To determine if the transcriptomic effects of the klf9-/- mutation vary with time of day, we performed bulk RNA-seq on 5 dpf zebrafish embryos sampled at three timepoints encompassing the predawn peak and midmorning nadir of klf9 expression. We found that while the major effects of the klf9-/- mutation that we reported previously are robust to time of day, the mutation has additional effects that manifest only at the predawn time point. We used a published single-cell atlas of zebrafish development to associate the effects of the klf9-/- mutation with different cell types and found that the mutation increased mRNA associated with digestive organs (liver, pancreas, and intestine) and decreased mRNA associated with differentiating neurons and blood. Measurements from confocally-imaged larvae suggest that overrepresentation of liver mRNA in klf9-/- mutants is due to development of enlarged livers.


Assuntos
Fatores de Transcrição Kruppel-Like , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Regulação da Expressão Gênica , Expressão Gênica , RNA Mensageiro/metabolismo
12.
Nat Methods ; 6(9): 663-6, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19668205

RESUMO

We designed a high-density mouse genotyping array containing 623,124 single-nucleotide polymorphisms that captures the known genetic variation present in the laboratory mouse. The array also contains 916,269 invariant genomic probes targeted to functional elements and regions known to harbor segmental duplications. The array opens the door to the characterization of genetic diversity, copy-number variation, allele-specific gene expression and DNA methylation, and will extend the successes of human genome-wide association studies to the mouse.


Assuntos
Genótipo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Composição de Bases , DNA/genética , Camundongos , Hibridização de Ácido Nucleico , Polimorfismo de Nucleotídeo Único
13.
Cancer Res ; 82(22): 4126-4138, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36069866

RESUMO

Patient-derived xenograft (PDX) models are an effective preclinical in vivo platform for testing the efficacy of novel drugs and drug combinations for cancer therapeutics. Here we describe a repository of 79 genomically and clinically annotated lung cancer PDXs available from The Jackson Laboratory that have been extensively characterized for histopathologic features, mutational profiles, gene expression, and copy-number aberrations. Most of the PDXs are models of non-small cell lung cancer (NSCLC), including 37 lung adenocarcinoma (LUAD) and 33 lung squamous cell carcinoma (LUSC) models. Other lung cancer models in the repository include four small cell carcinomas, two large cell neuroendocrine carcinomas, two adenosquamous carcinomas, and one pleomorphic carcinoma. Models with both de novo and acquired resistance to targeted therapies with tyrosine kinase inhibitors are available in the collection. The genomic profiles of the LUAD and LUSC PDX models are consistent with those observed in patient tumors from The Cancer Genome Atlas and previously characterized gene expression-based molecular subtypes. Clinically relevant mutations identified in the original patient tumors were confirmed in engrafted PDX tumors. Treatment studies performed in a subset of the models recapitulated the responses expected on the basis of the observed genomic profiles. These models therefore serve as a valuable preclinical platform for translational cancer research. SIGNIFICANCE: Patient-derived xenografts of lung cancer retain key features observed in the originating patient tumors and show expected responses to treatment with standard-of-care agents, providing experimentally tractable and reproducible models for preclinical investigations.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Xenoenxertos , Ensaios Antitumorais Modelo de Xenoenxerto , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Modelos Animais de Doenças
14.
PLoS Genet ; 4(7): e1000119, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18617997

RESUMO

Among mammals, genetic recombination occurs at highly delimited sites known as recombination hotspots. They are typically 1-2 kb long and vary as much as a 1,000-fold or more in recombination activity. Although much is known about the molecular details of the recombination process itself, the factors determining the location and relative activity of hotspots are poorly understood. To further our understanding, we have collected and mapped the locations of 5,472 crossover events along mouse Chromosome 1 arising in 6,028 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. Crossovers were mapped to a minimum resolution of 225 kb, and those in the telomere-proximal 24.7 Mb were further mapped to resolve individual hotspots. Recombination rates were evolutionarily conserved on a regional scale, but not at the local level. There was a clear negative-exponential relationship between the relative activity and abundance of hotspot activity classes, such that a small number of the most active hotspots account for the majority of recombination. Females had 1.2x higher overall recombination than males did, although the sex ratio showed considerable regional variation. Locally, entirely sex-specific hotspots were rare. The initiation of recombination at the most active hotspot was regulated independently on the two parental chromatids, and analysis of reciprocal crosses indicated that parental imprinting has subtle effects on recombination rates. It appears that the regulation of mammalian recombination is a complex, dynamic process involving multiple factors reflecting species, sex, individual variation within species, and the properties of individual hotspots.


Assuntos
Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Camundongos/genética , Recombinação Genética , Animais , Cromossomos de Mamíferos/química , Cruzamentos Genéticos , Éxons , Feminino , Conversão Gênica , Masculino , Camundongos Endogâmicos , Impressão Molecular , Especificidade da Espécie , Telômero/genética , Sítio de Iniciação de Transcrição
15.
Sci Rep ; 10(1): 11415, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651405

RESUMO

The zebrafish has recently emerged as a model system for investigating the developmental roles of glucocorticoid signaling and the mechanisms underlying glucocorticoid-induced developmental programming. To assess the role of the Glucocorticoid Receptor (GR) in such programming, we used CRISPR-Cas9 to produce a new frameshift mutation, GR369-, which eliminates all potential in-frame initiation codons upstream of the DNA binding domain. Using RNA-seq to ask how this mutation affects the larval transcriptome under both normal conditions and with chronic cortisol treatment, we find that GR mediates most of the effects of the treatment, and paradoxically, that the transcriptome of cortisol-treated larvae is more like that of larvae lacking a GR than that of larvae with a GR, suggesting that the cortisol-treated larvae develop GR resistance. The one transcriptional regulator that was both underexpressed in GR369- larvae and consistently overexpressed in cortisol-treated larvae was klf9. We therefore used CRISPR-Cas9-mediated mutation of klf9 and RNA-seq to assess Klf9-dependent gene expression in both normal and cortisol-treated larvae. Our results indicate that Klf9 contributes significantly to the transcriptomic response to chronic cortisol exposure, mediating the upregulation of proinflammatory genes that we reported previously.


Assuntos
Sistemas CRISPR-Cas , Mutação da Fase de Leitura , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores de Glucocorticoides/metabolismo , Transcriptoma , Proteínas de Peixe-Zebra/metabolismo , Animais , Éxons , Deleção de Genes , Regulação da Expressão Gênica , Homozigoto , Humanos , Hidrocortisona/metabolismo , Inflamação , Larva , Mutação , RNA-Seq , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais , Regulação para Cima , Peixe-Zebra/genética
16.
Dev Cell ; 7(4): 597-606, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15469847

RESUMO

A comprehensive analysis of transposable element (TE) expression in mammalian full-grown oocytes reveals that LTR class III retrotransposons make an unexpectedly high contribution to the maternal mRNA pool, which persists in cleavage stage embryos. The most abundant transcripts in the mouse oocyte are from the mouse transcript (MT) retrotransposon family, and expression of this and other TE families is developmentally regulated. Furthermore, TEs act as alternative promoters and first exons for a subset of host genes, regulating their expression in full-grown oocytes and cleavage stage embryos. To our knowledge, this is the first example of TEs initiating synchronous, developmentally regulated expression of multiple genes in mammals. We propose that differential TE expression triggers sequential reprogramming of the embryonic genome during the oocyte to embryo transition and in preimplantation embryos.


Assuntos
Blastocisto/fisiologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/fisiologia , Retroelementos/fisiologia , Animais , Sequência de Bases , Sequência Consenso , Éxons , Feminino , Íntrons , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Filogenia , Gravidez , Sequências Repetidas Terminais , Transcrição Gênica
17.
Bioinformatics ; 24(23): 2684-90, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18852176

RESUMO

MOTIVATION: Cis-acting regulatory elements are frequently constrained by both sequence content and positioning relative to a functional site, such as a splice or polyadenylation site. We describe an approach to regulatory motif analysis based on non-negative matrix factorization (NMF). Whereas existing pattern recognition algorithms commonly focus primarily on sequence content, our method simultaneously characterizes both positioning and sequence content of putative motifs. RESULTS: Tests on artificially generated sequences show that NMF can faithfully reproduce both positioning and content of test motifs. We show how the variation of the residual sum of squares can be used to give a robust estimate of the number of motifs or patterns in a sequence set. Our analysis distinguishes multiple motifs with significant overlap in sequence content and/or positioning. Finally, we demonstrate the use of the NMF approach through characterization of biologically interesting datasets. Specifically, an analysis of mRNA 3'-processing (cleavage and polyadenylation) sites from a broad range of higher eukaryotes reveals a conserved core pattern of three elements.


Assuntos
Biologia Computacional/métodos , Sequências Reguladoras de Ácido Ribonucleico , Algoritmos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
18.
Nucleic Acids Res ; 35(1): 234-46, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17158511

RESUMO

Gene expression and processing during mouse male germ cell maturation (spermatogenesis) is highly specialized. Previous reports have suggested that there is a high incidence of alternative 3'-processing in male germ cell mRNAs, including reduced usage of the canonical polyadenylation signal, AAUAAA. We used EST libraries generated from mouse testicular cells to identify 3'-processing sites used at various stages of spermatogenesis (spermatogonia, spermatocytes and round spermatids) and testicular somatic Sertoli cells. We assessed differences in 3'-processing characteristics in the testicular samples, compared to control sets of widely used 3'-processing sites. Using a new method for comparison of degenerate regulatory elements between sequence samples, we identified significant changes in the use of putative 3'-processing regulatory sequence elements in all spermatogenic cell types. In addition, we observed a trend towards truncated 3'-untranslated regions (3'-UTRs), with the most significant differences apparent in round spermatids. In contrast, Sertoli cells displayed a much smaller trend towards 3'-UTR truncation and no significant difference in 3'-processing regulatory sequences. Finally, we identified a number of genes encoding mRNAs that were specifically subject to alternative 3'-processing during meiosis and postmeiotic development. Our results highlight developmental differences in polyadenylation site choice and in the elements that likely control them during spermatogenesis.


Assuntos
Poliadenilação , Sinais de Poliadenilação na Ponta 3' do RNA , Espermatogênese/genética , Testículo/metabolismo , Regiões 3' não Traduzidas/química , Animais , Evolução Molecular , Etiquetas de Sequências Expressas/química , Masculino , Camundongos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
19.
Genetics ; 212(3): 919-929, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31113812

RESUMO

Systems genetic analysis of complex traits involves the integrated analysis of genetic, genomic, and disease-related measures. However, these data are often collected separately across multiple study populations, rendering direct correlation of molecular features to complex traits impossible. Recent transcriptome-wide association studies (TWAS) have harnessed gene expression quantitative trait loci (eQTL) to associate unmeasured gene expression with a complex trait in genotyped individuals, but this approach relies primarily on strong eQTL. We propose a simple and powerful alternative strategy for correlating independently obtained sets of complex traits and molecular features. In contrast to TWAS, our approach gains precision by correlating complex traits through a common set of continuous phenotypes instead of genetic predictors, and can identify transcript-trait correlations for which the regulation is not genetic. In our approach, a set of multiple quantitative "reference" traits is measured across all individuals, while measures of the complex trait of interest and transcriptional profiles are obtained in disjoint subsamples. A conventional multivariate statistical method, canonical correlation analysis, is used to relate the reference traits and traits of interest to identify gene expression correlates. We evaluate power and sample size requirements of this methodology, as well as performance relative to other methods, via extensive simulation and analysis of a behavioral genetics experiment in 258 Diversity Outbred mice involving two independent sets of anxiety-related behaviors and hippocampal gene expression. After splitting the data set and hiding one set of anxiety-related traits in half the samples, we identified transcripts correlated with the hidden traits using the other set of anxiety-related traits and exploiting the highest canonical correlation (R = 0.69) between the trait data sets. We demonstrate that this approach outperforms TWAS in identifying associated transcripts. Together, these results demonstrate the validity, reliability, and power of reference trait analysis for identifying relations between complex traits and their molecular substrates.


Assuntos
Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas , Transcriptoma , Animais , Ansiedade/genética , Perfilação da Expressão Gênica/normas , Estudo de Associação Genômica Ampla/normas , Humanos , Padrões de Referência
20.
PeerJ ; 7: e6586, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30944774

RESUMO

In this study, we investigated the impact of initial tumor volume, rate of tumor growth, cohort size, study duration, and data analysis method on chemotherapy treatment response classifications in patient-derived xenografts (PDXs). The analyses were conducted on cisplatin treatment response data for 70 PDX models representing ten cancer types with up to 28-day study duration and cohort sizes of 3-10 tumor-bearing mice. The results demonstrated that a 21-day dosing study using a cohort size of eight was necessary to reliably detect responsive models (i.e., tumor volume ratio of treated animals to control between 0.1 and 0.42)-independent of analysis method. A cohort of three tumor-bearing animals led to a reliable classification of models that were both highly responsive and highly nonresponsive to cisplatin (i.e., tumor volume ratio of treated animals to control animals less than 0.10). In our set of PDXs, we found that tumor growth rate in the control group impacted treatment response classification more than initial tumor volume. We repeated the study design factors using docetaxel treated PDXs with consistent results. Our results highlight the importance of defining endpoints for PDX dosing studies when deciding the size of cohorts to use in dosing studies and illustrate that response classifications for a study do not differ significantly across the commonly used analysis methods that are based on tumor volume changes in treatment versus control groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA