Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mov Disord ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718138

RESUMO

OBJECTIVE: Gene therapy by convection-enhanced delivery of type 2 adeno-associated virus-glial cell derived neurotrophic factor (AAV2-GDNF) to the bilateral putamina seeks to increase GDNF gene expression and treat Parkinson's disease (PD). METHODS: A 63-year-old man with advanced PD received AAV2-GDNF in a clinical trial. He died from pneumonia after anterior cervical discectomy and fusion 45 months later. An autopsy included brain examination for GDNF transgene expression. Putaminal catecholamine concentrations were compared to in vivo 18F-Fluorodopa (18F-FDOPA) positron emission tomography (PET) scanning results before and 18 months after AAV2-GDNF infusion. RESULTS: Parkinsonian progression stabilized clinically. Postmortem neuropathology confirmed PD. Bilateral putaminal regions previously infused with AAV2-GDNF expressed the GDNF gene. Total putaminal dopamine was 1% of control, confirming the striatal dopaminergic deficiency suggested by baseline 18F-DOPA-PET scanning. Putaminal regions responded as expected to AAV2-GDNF. CONCLUSION: After AAV2-GDNF infusion, infused putaminal regions showed increased GDNF gene expression, tyrosine hydroxylase immunoreactive sprouting, catechol levels, and 18F-FDOPA-PET signal, suggesting the regenerative potential of AAV2-GDNF in PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

2.
J Neurophysiol ; 129(2): 347-355, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542422

RESUMO

The parabrachial nucleus (PB) in the upper brainstem receives interoceptive information and sends a massive output projection directly to the cerebral cortex. Its glutamatergic axons primarily target the midinsular cortex, and we have proposed that this PB-insular projection promotes arousal. Here, we test whether stimulating this projection causes wakefulness. We combined optogenetics and video-electroencephalography (vEEG) in mice to test this hypothesis by stimulating PB axons in the insular cortex. Stimulating this projection did not alter the cortical EEG or awaken mice. Also, despite a tendency toward aversion, PB-insular stimulation did not significantly alter real-time place preference (RTPP). These results are not consistent with the hypothesis that the direct PB-insular projection is part of the ascending arousal system.NEW & NOTEWORTHY A brainstem region critical for wakefulness overlaps the medial parabrachial nucleus (PB) and has functional and direct axonal connectivity with the insular cortex. In this study, we hypothesized that this direct projection from the PB to the insular cortex promotes arousal. However, photostimulating PB axons in the insular cortex did not alter the cortical EEG or awaken mice. This information constrains the possible circuit connections through which brainstem neurons may sustain arousal.


Assuntos
Tronco Encefálico , Córtex Cerebral , Camundongos , Animais , Tronco Encefálico/fisiologia , Eletroencefalografia , Nível de Alerta , Vigília
3.
J Clin Med ; 12(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959191

RESUMO

Neurosurgeons evaluate MRI scans to document whether surgical treatment has reduced syrinx size. Manual measurement of syrinx volume is time-consuming and potentially introduces operator error and bias. Developing convenient semiautomated volumetric analysis methods may encourage their clinical implementation and improve syringomyelia monitoring. We analyzed 30 SPGR axial MRI scans from 15 pre- and postoperative Chiari I and syringomyelia patients using two semiautomated (SCAT and 3DQI) methods and a manual Cavalieri (CAV) method. Patients' spinal cord and syrinx volumes pre- and postoperatively were compared by paired t-test. A decrease in syrinx volume (mm3) after surgery was detected across all methods. Mean syrinx volume (± SD) measured by CAV (n = 30) was, preoperatively, 4515 mm3 ± 3720, postoperatively 1109 ± 1469; (p = 0.0004). SCAT was, pre, 4584 ± 3826, post, 1064 ± 1465; (p = 0.0007) and 3DQI was, pre, 4027 ± 3805, post, 819 ± 1242; (p = 0.001). 3DQI and CAV detected similar mean spinal cord volumes before (p = 0.53) and after surgery (p = 0.23), but SCAT volumes differed significantly (p = 0.005, p = 0.0001). The SCAT and 3DQI semiautomated methods recorded surgically related syrinx volume changes efficiently and with enough accuracy for clinical decision-making and research studies.

4.
Brain Struct Funct ; 227(6): 1921-1932, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35648216

RESUMO

Neurons emit axons, which form synapses, the fundamental unit of the nervous system. Neuroscientists use genetic anterograde tracing methods to label the synaptic output of specific neuronal subpopulations, but the resulting data sets are too large for manual analysis, and current automated methods have significant limitations in cost and quality. In this paper, we describe a pipeline optimized to identify anterogradely labeled presynaptic boutons in brain tissue sections. Our histologic pipeline labels boutons with high sensitivity and low background. To automatically detect labeled boutons in slide-scanned tissue sections, we developed BoutonNet. This detector uses a two-step approach: an intensity-based method proposes possible boutons, which are checked by a neural network-based confirmation step. BoutonNet was compared to expert annotation on a separate validation data set and achieved a result within human inter-rater variance. This open-source technique will allow quantitative analysis of the fundamental unit of the brain on a whole-brain scale.


Assuntos
Terminações Pré-Sinápticas , Sinapses , Axônios , Encéfalo , Humanos , Neurônios , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA